
Advancing Code Readability: Mined &
Modified Code for Dataset Generation

Lukas Krodinger

Master Thesis in M.Sc. Computer Science
Faculty of Computer Science and Mathematics

Chair of Software Engineering II

Matriculation number 89801
Supervisor Prof. Dr. Gordon Fraser
Advisor Elisabeth Griebl

26th March 2024

Lukas Krodinger:
Advancing Code Readability: Mined & Modified Code for Dataset Generation
Master Thesis, University of Passau, 2024.

Acknowledgements

I want to express my gratitude to the following individuals whose support and
contributions were invaluable throughout the completion of this thesis:

Professor Dr. Gordon Fraser, my supervisor, for his insightful feedback, academic
support, and provision of resources from the chair. His expertise and guidance
were invaluable in navigating the complexities of this research.

Elisabeth Griebl, my advisor, for her invaluable guidance, support, and encour-
agement throughout the entire process of this thesis. Her expertise, feedback,
and supervision were instrumental in shaping this thesis.

Benedikt Fein, for introducing and supporting the use of podman with slurm.
The provision of scripts and his technical expertise and support were crucial in
overcoming the challenges encountered during this research.

Tien Duc Nguyen, for his development and support of the survey instrument.
His contributions were essential for the data collection in this work.

Christina Praml, for her unwavering support, invaluable advice, and constant
encouragement. Not only her support but also her professional comments and
criticism were of extraordinary usefulness.

Maximilian Jungwirth, for his contributions to the main ideas of REDEC, provi-
sion of tools for applying Checkstyle to Java files, and his careful proofreading.
His ideas, tools, and comments made this work possible in the first place.

Katrin Schmelz, Julia Krodinger and Severin Primbs for their careful proofreading
and valuable feedback. Their attention to detail and constructive criticism
contributed significantly to the clarity and coherence of this work.

To all those mentioned above and countless others who have helped me along
the way, thank you for your support and encouragement.

Sincerely,

Lukas Krodinger

iii

Abstract

Deep learning-based models are achieving increasingly superior accuracy in
classifying the readability of code. Recent research focuses primarily on different
model architectures to improve code readability classification. All models use
(parts of) the same labeled dataset, consisting of 421 code snippets. However,
deep learning-based approaches improve with a large amount of data. There-
fore, a larger labeled dataset could greatly advance the research field of code
readability classification.

We investigate using a new dataset consisting of 69k code snippets with its novel
generation approach. The generation approach involves mining and modifying
code snippets from public GitHub repositories. We validate the generated dataset
using a survey with 200 participants and by training and evaluating a state-of-
the-art code readability classification model both with and without the new
dataset. In the future, our dataset might increase the accuracy of all readability
classification models.

iv

Contents

1 Introduction 3

2 Background and Related Work 7
2.1 Code Readability . 7
2.2 Conventional Calculation Approaches 9
2.3 Deep Learning Based Approaches 9
2.4 Data Augmentation . 11
2.5 Diverse Perspectives . 11
2.6 Data Generation . 13
2.7 Abstract Syntax Tree . 14
2.8 Stratified Sampling . 14

3 Mined and Modified Code for Dataset Generation 15
3.1 Work on Existing Datasets . 15
3.2 Classification Considerations . 15
3.3 Dataset Generation Approach 16
3.4 REDEC: Readability Decreaser 18
3.5 Construction of Questionnaires 24
3.6 Readability Classification Model 29

4 Evaluation 35
4.1 Research Questions . 35
4.2 Pilot Survey . 36

4.2.1 Experimental setup . 36
4.2.2 Threats to Validity . 37
4.2.3 Results . 37

4.3 Prolific Survey . 38
4.3.1 Experimental setup . 38
4.3.2 Threats to Validity . 41
4.3.3 Results . 41

1

4.4 Model Training . 47
4.4.1 Experimental Setup . 47
4.4.2 Results . 48

5 Discussion 51

6 Conclusions and Future Work 53

A Pilot Survey Feedback 61

B REDEC Configuration File 65

C Prolific Survey Texts 67

D Towards Model - Visual Encoding Colors 69

2 Contents

1
Introduction

Code readability is of utmost significance in the domain of software develop-
ment. Together with understandability, it serves as the foundation for efficient
collaboration, comprehension, and maintenance of software systems [32, 1].
Maintenance alone consumes over 70 % of the total lifecycle cost of a software
product, and for maintenance, the most time-consuming act is reading code [8,
11, 35, 6]. Therefore, it is essential to ensure a high readability of code. To
archive this, we need to measure readability. Within the last years, researchers
have proposed several metrics and models for assessing code readability with
an accuracy of up to 81.8 % [8, 32, 14, 36]. In recent years, deep learning-based
models achieved an accuracy of up to 88.0 % [23, 24, 40, 26, 20, 21].

A major limitation of these models is not their architecture but the amount of data
for Java code readability classification, which comprises 421 code snippets [8,
14, 36]. The current training data originates from questionnaires where humans
manually labeled the code snippets. This approach has two drawbacks: Firstly,
manual labeling requires much effort. Secondly, the dataset is very small for
deep learning, as this requires a large amount of data [16]. To address these
drawbacks, we aim to generate more training data automatically.

The idea of this work is to investigate whether it is possible to achieve higher
accuracy in code readability classification using automatically generated data.

As a first step, we mine GitHub1 repositories with high code quality. Our
criteria for high code quality are an elevated number of stars and forks, the
use of method comments, and compliance with a checkstyle2 specification. For
example, a consequence of using checkstyle is that the formatting of the code
is better. Therefore, it is reasonable to assume that checkstyle repositories are
more readable than others (Section 3.3). We select Java files from the repositories

1https://github.com/, accessed: 2024-02-29
2https://checkstyle.sourceforge.io/, accessed: 2024-02-09

3

https://github.com/
https://checkstyle.sourceforge.io/

1 /**

2 * Calculates the factorial of a given number.

3 *

4 * @param number The number to calculate the factorial of.

5 * @return The factorial of the input number.

6 */

7 public int calculateFactorial(int number) {

8 int factorial = 1;

9 for (int i = 1; i <= number; i++) {

10 factorial *= i;

11 }

12 return factorial;

13 }

(a) An example of a simple and well readable Java method.

1 public int foo(int x) {

2 int y = 1;

3 for (int z=1; z<=x; z++) {

4 y *= z;}

5 return y;

6 }

(b) The same example as in Listing 1.1a but modified for poor readability.

Listing 1.1: Well readable (Listing 1.1a) vs. poorly readable (Listing 1.1b) code.

that meet our criteria, extract methods from the Java classes in these files, and
label them as well readable (Assumption 1).

As a second step, we modify all selected Java files so that the code is subsequently
less readable. For an exemplary result, see Listing 1.1. We extract methods from
these Java files and label them poorly readable (Assumption 2). After both
steps, the result is a new automatically generated dataset for code readability
classification, called the mined-and-modified dataset.

How can we modify code so that it is less readable afterward? We introduce
a tool called Readability Decreaser (REDEC). It uses a collection of heuristics
that reduce the readability of Java files. Such heuristics are replacing spaces
with newlines or increasing the indentation of a code block by a tab or multiple
spaces. Most modifications also decrease readability when applied in reverse
(like replacing newlines with spaces or decreasing indentation).

4 1 Introduction

The Java code is syntactically and functionally the same before and after ap-
plying REDEC. However, if we use various modifications many times, those
modifications can lower the readability of source code, as Listing 1.1 shows.

We conducted a user study to validate the assumptions that the mined methods
from the selected Java class files are well readable (Assumption 1) and, that
REDEC can modify the code to be poorly readable (Assumption 2). We ensure
that the mined-and-modified dataset contains well and poorly readable code,
both labeled correctly. Additionally, we verify the dataset by training and
evaluating a state-of-the-art deep learning model with it. We use the readability
model of Mi et al. [26] for this.

Our contributions are as follows:

• Although existing datasets [8, 14, 36] have different structures, we combine
and unify them into one merged dataset (Section 3.1).

• We reason that Mi et al. used only part of the available data for training
and evaluating their readability classification model [26] (Section 3.2).

• We develop an approach for mining well readable Java methods, thereby
achieving automated dataset generation for code readability. With this
approach, we introduce the new mined-and-modified dataset (Section 3.3).

• We succeeded in creating a tool that can automatically decrease the read-
ability of Java class files (Section 3.4): REDEC.

• We show a representative and resource-effective sample approach since
many possible combinations of sample methods exist for a user study
(Section 3.5).

• We demonstrate limitations of the model of Mi et al. [26] (Section 3.6).

• We show through a survey (Section 4.3) that the well readable assumption
(Assumption 1) and poorly readable assumption (Assumption 2) hold.

• We show that the mined-and-modified dataset can be used for code read-
ability classification models by training and evaluating the model of Mi
et al. [26] with and without the mined-and-modified dataset (Section 4.4).

Our automated approach for creating a readability classification dataset is effect-
ive. The mined-and-modified dataset, consisting of 69k samples, contains well
readable and the poorly readable methods. We infer from the model training
results that the mined-and-modified dataset captures different aspects of code
readability as previous datasets [8, 14, 36]. Our code is publicly available:

https://github.com/LuKrO2011/master-thesis.

5

https://github.com/LuKrO2011/master-thesis

2
Background and Related Work

In the following sections, we describe the background and related work on code
readability and our approach for dataset generation.

2.1 CODE READABILITY

When talking about code readability classification, we need to clarify what this
term means. Buse and Weimer provide the earliest definition [8]: ‘We define
readability as a human judgment of how easy a text is to understand.’

Tashtoush et al. combine numerous other aspects from various definitions. Ac-
cording to them, code readability can be measured by looking at the following
aspects [42]:

• Ratio between lines of code and number of commented lines

• Writing to people, not to computers

• Making a code locally understandable without searching for declarations
and definitions

• Average number of right answers to a series of questions about a program
in a given length of time

Recent definitions of code readability are shorter, trying to focus on the key
aspects. Oliveira et al. define readability as ‘what makes a program easier or
harder to read and apprehend by developers’ [30].

Mi et al. summarize code readability as ‘a human judgment of how easy a piece of
source code is to understand’ [25]. This definition comes close to the definition
of Buse and Weimer [8].

7

There are various related terms to readability: Understandability, usability,
reusability, complexity, and maintainability [42]. Among those, complexity and
understandability are especially closely related to readability.

Readability is different from complexity. Complexity is an ‘essential’ property
of software that arises from system requirements, whereas readability is an
‘accidental’ property that is not determined by the problem statement [8, 7].

Readability is different from understandability, as the key aspects of understand-
ability are [36, 19, 45, 5]:

• Complexity

• Usage of design concepts

• Formatting

• Source code lexicon

• Visual aspects (e.g., syntax highlighting)

Posnett et al. state that readability is the syntactic aspect of processing code,
while understandability is the semantic aspect [32].

Based on Posnett et al., Scalabrino et al. write [36]: ‘Readability measures the
effort of the developer to access the information contained in the code, while
understandability measures the complexity of such information’.

For example, a developer can find a piece of code readable but still challenging to
understand. Recent research gives evidence that there is no correlation between
understandability and readability [37].

Comparing the definitions of code readability in literature we notice some shared
aspects in most definitions. These are:

• Ease/complexity of understanding/comprehension/apprehension

• Human judgment/assessment

• Effort of the process of reading (differentiation to understandability)

Considering these aspects, the definition of Oliveira et al. best captures the
meaning of code readability.

Code readability is ‘what makes a program easier or harder to read and apprehend
by developers’ [30].

8 2 Background and Related Work

Table 2.1: Accuracy scores of two-class readability classification models.

Model Type Accuracy

Buse and Weimer [8] Conventional 76.5 %
Posnett et al. [32] Conventional 71.7 %
Dorn [14] Conventional 78.6 %
Scalabrino et al. [36] Conventional 81.8 %
Mi_IncepCRM [23] Deep Learning 84.2 %
Mi_DeepCRM [24] Deep Learning 83.8 %
Sharma and Srivastava [40] Deep Learning 84.8 %
Mi_Towards [26] Deep Learning 85.3 %
Mi_Ranking [20] Deep Learning 83.5 %
Mi_Graph [21] Deep Learning 88.0 %

2.2 CONVENTIONAL CALCULATION APPROACHES

A first estimation for source code readability was the percentage of comment
lines over total code lines [1]. Then, researchers proposed several more com-
plex metrics and models for assessing code readability [8, 32, 14, 36]. Those
approaches used handcrafted features to calculate how readable a piece of code
is. Handcrafted features include the number of identifiers, parentheses, blank
lines, or comments. In general, they are calculated by counting the number
of specific tokens or words or by measuring certain code properties [36]. In
contrast to machine and deep learning-based approaches (Section 2.3), humans
determine the features of conventional models based on domain knowledge.
Scalabrino et al. were able to achieve up to 81.8 % accuracy in code readability
classification using handcrafted features [36].

2.3 DEEP LEARNING BASED APPROACHES

Machine learning, especially deep learning, has recently dominated code readab-
ility classification. As the quality of the models increased, so did their accuracy.
Table 2.1 shows an overview of the accuracy scores.

IncepCRM was the first introduced deep learning model for code readability
classification. It automatically learns multi-scale features from source code with
minimal manual intervention [23].

2.2 Conventional Calculation Approaches 9

In a follow-up paper, Convolutional Neural Networks (ConvNets) were intro-
duced to code readability classification in a model called DeepCRM. Unlike
previously, DeepCRM employs three ConvNets with identical architectures [24].

Another study proposed an approach using Generative Adversarial Networks
(GANs). The proposed method involves encoding source codes into integer
matrices with multiple granularities and utilizing an EGAN (Enhanced GAN) [40].
It surpassed the accuracy of previous readability classification models as shown
in Table 2.1.

Deep learning-based code readability models could not focus on structural
features. Mi et al. addressed this by proposing a model, Mi_Towards, that extracts
features from the source code’s visual, semantic, and structural aspects. Using
a hybrid neural network composed of BERT, CNN, and Bidirectional LSTM,
the proposed model processes RGB matrices, token sequences, and character
matrices to capture various features of source code [26].

Previously, code readability classification was considered mainly as a task applied
to a single code snippet simultaneously. A new approach frames the problem as
a ranking task. The proposed model employs siamese neural networks to rank
code pairs based on their readability [20].

The introduction of a graph-based representation method for code readability
classification surpassed all accuracy scores in two-class classification (Table 2.1).
The proposed method involves parsing source code into a graph with an Abstract
Syntax Tree (AST), combining control and data flow edges, and converting node
information into vectors. The model, comprising Graph Convolutional Network
(GCN), DMoNPooling, and K-dimensional Graph Neural Networks (k-GNNs)
layers, extracts syntactic and semantic features [21].

Until now, researchers introduced many deep learning architectures and com-
ponents to various classification models to surpass previous accuracy scores.
The common limitation of all models is a dataset consisting of 421 code snippets.
Therefore, the main contribution of this work is not a model that outperforms
a state-of-the-art model but a new dataset. For evaluation, we opted for the
Mi_Towards model (from now on referred to as Towards model) from Mi et
al. [26]. We did not choose the best performing one, Mi_Graph [21], as its
main contribution is to use the AST representation of the code, while our data-
set generation approach includes features that are not represented in the AST
(Section 3.4).

10 2 Background and Related Work

2.4 DATA AUGMENTATION

Researchers trained all mentioned models with (parts of) the data from Buse
and Weimer [8], Dorn [14] and Scalabrino et al. [36], consisting of a total of 421
Java code snippets. They generated the data with surveys. Therefore, they asked
developers several questions, including how readable the proposed source code
is [8, 14, 36]. We refer to the combination of their datasets as merged dataset.

Some researchers recognized the problem of needing more data for code readab-
ility classification to train machine learning models.

A recently published paper addresses the challenge of acquiring a larger amount
of labeled data using augmentation. The researchers proposed to artificially
expand the training set instead of the time-consuming and expensive process
of obtaining labels manually. They employ domain-specific transformations,
such as manipulating comments, indentations, and names of classes/method-
s/variables, and explore using Auxiliary Classifier GANs to generate synthetic
data. They advance to a classification accuracy of 87.3 % [25]. Lately, research-
ers successfully enhanced data augmentation by incorporating domain-specific
data transformation and GANs [22]. The results of both show that more data
significantly impacts the accuracy of the classification. However, they artificially
augment using the 421 code snippets of the merged dataset. Thus, they base
their augmented data on these 421 code snippets. Our new mined-and-modified
dataset does not have this limitation.

Researchers developed a methodology to identify readability-improving com-
mits, creating a dataset of 122k commits from GitHub’s revision history. They
used this dataset to identify and suggest readability-improving actions for code
snippets automatically. They trained a T5 model to emulate developers’ actions
in improving code readability, achieving a prediction accuracy between 21 % and
28 %. The empirical evaluation shows that 82-91 % of the dataset commits aim
to improve readability, and the model successfully mimics developers in 21 %
of cases [44]. The approach shows the potential of a large dataset. However,
the dataset and model results used in the study are hardly comparable with
those of previous studies due to the use of commits instead of code snippets. We
continue to use code snippets.

2.5 DIVERSE PERSPECTIVES

Other important research in the field of readability classification does not directly
affect this work but could have implications for future works.

2.4 Data Augmentation 11

Fakhoury et al. showed that models do not capture what developers think
of readability improvements. Therefore, they analyzed 548 GitHub commits
manually. They suggest considering other metrics, such as incoming method
calls or method name fitting [15].

Oliveira et al. conducted a systematic literature review of 54 relevant studies
on code readability and legibility, examining how different factors impact com-
prehension. The authors analyzed tasks and response variables used in studies
comparing programming constructs, coding idioms, naming conventions, and
formatting guidelines [30].

Ribeiro and Travassos demonstrated a consistent perception that Python code
with more lines was deemed more comprehensible, irrespective of their experi-
ence level. However, regarding readability, variations were observed based on
code size, with less experienced participants expressing a preference for longer
code, while those with more experience favored shorter code. Novices and
experts agreed that long and complete-word identifiers enhanced readability
and comprehensibility. Additionally, including comments was found to impact
comprehension positively, and a consensus emerged in favor of four indentation
spaces [34].

Choi, Park et al. introduced an enhanced source code readability metric for
quantitatively measuring code readability in the software maintenance phase.
The proposed metric achieves a substantial explanatory power of 75.7 %. Addi-
tionally, the authors developed a tool named ‘Instant R. Gauge’, integrated with
Eclipse IDE. It provides real-time readability feedback and tracks readability
history, allowing developers to improve their coding habits gradually [10].

Mi et al. aimed to understand the causal relationship between code features
and readability in their paper. The authors proposed a causal theory-based
approach to overcome potential spurious correlations, utilizing the PC algorithm
and additive noise models to construct a causal graph. Experimental results
using human-annotated readability data revealed that the average number of
comments positively impacts code readability, while the average number of
assignments, identifiers, and periods have a negative impact [27].

Segedinac et al. introduced a novel approach for code readability classification
using eye-tracking data from 90 undergraduate students assessing Python code
snippets [39].

Although the approaches mentioned are not directly related to our work, they
are related to code readability classification. They could have an impact on
future research in this area.

12 2 Background and Related Work

2.6 DATA GENERATION

In addition to related work on models and datasets, there is also related work that
uses some of the ideas we employ in our proposed approach for data generation.

One concept we employ is from Allamanis et al. They cloned the top open-source
Java projects on GitHub for training a Deep Learning model. They selected the
top projects by taking the sum of the z-scores of the number of watchers and
forks of each project. The projects have thousands of forks and stars and are
widely used among software developers. Thus, the authors assumed the code
within to be of good quality [3]. We use the fork and star counts as criteria for
well readable code (Assumption 1).

Another concept we employ is the intentional degradation of source code to
create a dataset.

In the field of vulnerability detection in source code, Dolan-Gavitt et al. intro-
duced a technique for automatically inserting bugs into source code. They used
the generated dataset for the evaluation of vulnerability detection tools [13].

Pradel and Sen applied a similar approach to general bug detection using a deep
learning classifier. They generate training data by inserting bugs into existing
code. This process involves simple program transformations that are likely to
introduce incorrect code. They train a classifier to distinguish between correct
and incorrect code [33]. Yasunaga and Liang did similarly convert working
programs into broken ones. They pre-trained models on the automatically
generated dataset before fine-tuning them using a manually labeled one [46].
We also use the idea of pre-training and fine-tuning. Allamanis et al. has further
improved this approach by generating the dataset as a by-product of co-training
two models: One model is a detector that learns to detect and repair bugs in the
code. The second model is a selector that learns to create buggy code that is
hard to detect [2].

Loriot et al. used the idea and shifted the area to code formatting. This topic
comes closest to our topic of code readability. They created a model that can
fix checkstyle violations using deep learning. In the first step, they inserted
formatting violations into the code based on a project-specific format-checking
ruleset. They then used an LSTM neural network that learned how to undo
these insertions.

All of the mentioned approaches have in common that they generate a dataset in
an automated way by using the deliberate denigration of source code. Research-
ers used this approach successfully in vulnerability detection, error detection,
and code formatting. We apply it to code readability classification.

2.6 Data Generation 13

2.7 ABSTRACT SYNTAX TREE

When decreasing the readability of code (Section 3.4), we make use of the
Abstract Syntax Tree (AST). An AST is a hierarchical structure representing the
syntactic structure of source code. It is composed of nodes and edges. Each node
represents a language construct, such as expressions, statements, or declarations,
while edges denote the relationships between the nodes.

An AST is an abstraction that removes specific syntactic details, focusing on
the relationships between nodes. ASTs are widely used in compilers, static
analysis tools, and refactoring engines to perform tasks such as semantic analysis,
optimization, and code transformation [28]. The latter is our use case.

We transform source code into the AST, modify the AST (Table 3.2), and then
transform the AST back into the code representation. We do this conversion back
with a so-called Pretty Printer. Compared to performing the modifications on
the code, this has certain advantages, which are further detailed in Section 3.4.

2.8 STRATIFIED SAMPLING

In statistical analysis, we encounter situations where we can divide the popula-
tion into subgroups. Each group represents a characteristic. Stratified sampling
is a technique used to ensure that each of these subgroups is adequately repres-
ented in a sample, for example, for survey conduction [43].

We used stratified sampling when creating the questionnaires to prepare for
a user study (Section 4.3). For this purpose, we divide all code snippets into
homogeneous groups, so-called strata, which are based on similarities in specific
code properties. Such properties are method length, line length, or average
identifier length. Within each stratum, we select the samples randomly to
ensure that the sample is representative of the population. This method allows
us to evaluate our approach to data generation more accurately. We explain the
usage of stratified sampling in more detail in Section 3.5.

14 2 Background and Related Work

3
Mined and Modified Code for Dataset
Generation

The following sections describe our approach.

3.1 WORK ON EXISTING DATASETS

Most of the related work (Chapter 2) uses a combination of the data of Buse
and Weimer [8], Dorn [14] and Scalabrino et al. [36]. The raw data from their
surveys can be downloaded1, but their data needs to be uniformly formatted.
In addition to Java, the dataset of Dorn also includes Python and Cuda2 code
snippets. All datasets consist of differently formatted individual ratings rather
than the mean ratings used for training machine learning models. In contrast
to our mined-and-modified code snippets, theirs do not all have the scope of a
method. Instead, they consist of a few lines of code.

We converted and combined these three datasets into one: code-readability-
merged or, for short, merged. In recent years, Huggingface3 established as the
pioneer in making models and datasets available. Therefore, we decided to
publish the merged dataset on Huggingface4.

3.2 CLASSIFICATION CONSIDERATIONS

It is state of the art to perform a binary classification into well readable and
poorly readable code [23, 24, 40, 26, 20].

1https://dibt.unimol.it/report/readability/, accessed: 2024-02-18
2https://developer.nvidia.com/cuda-toolkit, accessed: 2024-03-23
3https://huggingface.co/, accessed: 2024-02-18
4https://huggingface.co/datasets/se2p/code-readability-merged, accessed:

2024-02-18

15

https://dibt.unimol.it/report/readability/
https://developer.nvidia.com/cuda-toolkit
https://huggingface.co/
https://huggingface.co/datasets/se2p/code-readability-merged

Code readability classification is not a binary classification task per se. Mi et al.
introduced a third, neutral class to address this problem [21]. When rating code
snippets, previous studies used a Likert scale [17] from 1 (very unreadable) to 5
(very readable) [8, 14, 36]. While the amount of classes varies, one can encode
the data internally as a single-value representation between 0 and 1, where a
higher value means higher readability. The model output is well readable if the
value after the last layer is above 0.5 and poorly readable otherwise.

The model used for evaluation is the Towards model of Mi et al. [26]. They
transformed the rating scores into binary classification using a single-value
representation. First, they calculated the mean values of all scores. In the second
step, they ranked the snippets according to their mean score. After that, they
labeled the top 25 % of the data as well readable (1.0) and the bottom 25 % as
poorly readable (0.0). They did not use 50 % of the data in between [26].

While this transformation is legitimate, especially with the argument that the
data in the middle is neither well readable nor poorly readable, it has drawbacks
that Mi et al. use only 50 % of the available data for model training and evaluation:

They reduce the available data from 421 to 210 Java code snippets. Note that the
small amount of available data is a bottleneck in readability classification. So
this is a considerable loss.

They evaluated their model using those 210 snippets which corresponds to 50 %
of the available data. We suspect that this might be a threat to validity. It could
be that the model performs remarkably worse when evaluated with random,
unseen data containing moderately readable code snippets.

We continue to use the binary classification approach and, for evaluation, the 210
code snippets to make our results comparable with the results of Mi et al. [26].

3.3 DATASET GENERATION APPROACH

We refer to the dataset generated by our approach as the mined-and-modified
dataset. Since we extract methods from code, code snippets and methods are
synonyms for our mine-and-modify approach. For the merged dataset, a code
snippet is not necessarily an entire method.

In contrast to previous datasets for readability classification, we generate our
dataset using an automated approach. The aim is to mine and modify code
from GitHub to obtain both, well readable and poorly readable methods. This
approach is novel to the best of our knowledge.

16 3 Mined and Modified Code for Dataset Generation

Extract and
label methods

Dataset

GitHub requests

Search for
checkstyle Get repository Get main

branch

Filtering and sorting

Filter
(disabled,

archived, etc.)

Sort
(Stars & Forks)

Download repos
and checkout

Extract well readable source code

Filter files by
checkstyle

Extract methods
with comments

Well readable
methods

Generate badly readable source code

Readability
Decreasing

Modifications

Poorly readable
methods

Extract methods
with comments

Figure 3.1: The used dataset generation approach.

We divide our approach into four parts (Figure 3.1). We use the first three steps
to mine well readable Java code. In the final step, we modify the well readable
code to achieve our second goal: poorly readable source code.

We start by querying the GitHub REST API5 for repositories that use check-
style (query string: ‘checkstyle filename:pom.xml’). The repository information
(including the URL) is stored together with the main branches. We remove all
repositories that are a fork of another repository, are archived, or are disabled.
Additionally, we delete repositories whose language is not Java and those lacking
a minimum of 20 stars and forks. We sort the remaining repositories by their
star and fork count (equally weighted). Then we clone the 100 best and check
out their main branch.

We run checkstyle using the project’s checkstyle configuration to obtain all Java
class files that pass that test. For this we use a tool from Maximilian Jungwirth6

which is based on Styler7 [18]. From the Java class files that passed checkstyle,

5https://docs.github.com/en/rest, accessed: 2024-02-15
6https://github.com/sphrilix/styler2.0, accessed: 2024-03-21
7https://github.com/ASSERT-KTH/styler, accessed: 2024-03-11

3.3 Dataset Generation Approach 17

https://docs.github.com/en/rest
https://github.com/sphrilix/styler2.0
https://github.com/ASSERT-KTH/styler

we extract all methods that have a comment of any kind at the beginning of the
method. This results in 39312 methods, which we assume to be well readable.

We generate poorly readable code from the well readable one. We use the
proposed REDEC tool (Section 3.4) to do this. We extract all methods starting
with a comment. Initially, we planned to avoid requiring comments for the
poorly readable dataset part. However, in this case, all well readable methods
have a comment, while most poorly readable methods do not. This leads to
shortcut learning, whether a method has a comment or not, instead of learning
to distinguish the methods by all other criteria as well.

We combine the mined well readable methods and the modified poorly readable
methods into the mined-and-modified dataset. We remove code snippets that are
identical for the original and the modified variant (Section 3.4). We balance the
dataset using random sampling. We label each well readable method and each
poorly readable method with the corresponding mean rating scores obtained
through a later user study (Section 4.3). The created mined-and-modified dataset
consists of 69276 code snippets.

3.4 REDEC: READABILITY DECREASER

In this section, we take a look at how we achieved to decrease the readability
of code using the Readability Decreaser (REDEC). REDEC uses a set of code
modification heuristics that it applies to Java files. We call these Readability
Decreasing Modifications.

REDEC initially converts the Java code of a well readable Java class file into an
Abstract Syntax Tree (AST, Section 2.7) using the spoon library8 [31]. In the
end, REDEC parses the AST back to Java code using the Pretty Printer of the
spoon library [31]. If nothing else is done, this results in just-pretty-print.
Note that the code of just-pretty-print is slightly different from the original
code, as the Pretty Printer overwrites the styling and formatting of the original
code by its default formatting.

We can use various modifications between the two steps and during pretty-
printing. You can find a description of each modification in Table 3.1 and
examples of the modifications in Listing 3.1 and Listing 3.2.

8https://spoon.gforge.inria.fr/, accessed: 2024-15-02

18 3 Mined and Modified Code for Dataset Generation

https://spoon.gforge.inria.fr/

Table 3.1: All Readability Decreasing Modifications with explanation and ex-
ample.

Modification Description Example
1 newline Replace a newline with none or

multiple ones
Listing 3.1b,
Lines 5-6

2 incTab Replace a tab indentation with
none or multiple ones

Listing 3.1b,
Line 5

3 decTab Replace a tab outdentation with
none or more ones

Listing 3.1b,
Line 7

4 space Replace a single space with mul-
tiple ones

Listing 3.1b,
Line 1

5 newLine

InsteadOf

Space

Replace a space with a newline Listing 3.1b,
Line 3-4

6 spaceInsteadOf

Newline

Replace a newline with a space Listing 3.1b,
Line 2

7 incTabInsteadOf

DecTab

Replace a tab outdentation with a
tab indentation

Listing 3.1b,
Line 9

8 decTabInsteadOf

IncTab

Replace a tab indentation with a
tab outdentation

Listing 3.1b,
Line 8

9 renameVariable Rename a variable declaration and
its usages

Listing 3.1b,
Line 1-3

10 renameField Rename a field declaration and its
usages

Listing 3.2b,
Line 4

11 renameMethod Rename a method declaration and
its usages

Listing 3.1b,
Line 1

12 inlineMethod Replace a method call with the
called code

Listing 3.2b,
Line 7-8

13 removeComment Remove a comment Listing 3.1b,
Line 1

14 add0 Add a zero to a number Listing 3.1b,
Line 2

15 insertBraces Insert superfluous braces Listing 3.1b,
Lines 3-4

16 starImport Replace a specific imports with a
star-import

Listing 3.2b,
Line 1

17 inlineField Replace a static field with its value Listing 3.2b,
Line 7

18 partially

Evaluate

Partially evaluate a constant Listing 3.2b,
Line 4

3.4 REDEC: Readability Decreaser 19

1 /**

2 * This method determines the sign of a given number and prints a

corresponding message.↪→

3 *

4 * @param number The input number to be checked.

5 */

6 public static void checkNumberSign(int number) {

7 if (number > 0) {

8 System.out.println("Number is positive");

9 } else if (number < 0) {

10 System.out.println("Number is negative");

11 } else {

12 System.out.println("Number is zero");

13 }

14 }

(a) An example of a simple and well readable Java method.

1 public static void m0(int v0) {

2 if (v0 > (0+0)) { System.out.println("Number is positive");

3 } else if ((v0 <

4 0)) {

5 System.out.println("Number is negative");

6

7 } else {

8 System.out.println("Number is zero");

9 } }

(b) The same example as in Listing 3.1a but modified for poorer readability.

Listing 3.1: Well readable (Listing 3.1a) vs. poorly readable (Listing 3.1b) Java
methods.

20 3 Mined and Modified Code for Dataset Generation

1 import java.util.Random;

2

3 public class TimeConverter {

4 public static final int MINUTES_PER_HOUR = 60;

5 public static final int HOURS_PER_DAY = 24;

6 public static final int MINUTES_PER_DAY = MINUTES_PER_HOUR *

HOURS_PER_DAY;↪→

7 public static final int SEED = 4242;

8

9 public int getRandomDays(int max) {

10 Random random = new Random(SEED);

11 return random.nextInt(max);

12 }

13

14 public int randomDaysInMinutes() {

15 int days = getRandomDays(10);

16 return days * MINUTES_PER_DAY;

17 }

18 }

(a) An example of a simple and well readable Java class file.

1 import java.util.*;

2

3 public class TimeConverter {

4 public static final int f0 = 1440;

5

6 public int randomDaysInMinutes() {

7 Random random = new Random(4242);

8 int days = random.nextInt(10);

9 return days * f0;

10 }

11 }

(b) The same example as in Listing 3.2a but modified for poorer readability.

Listing 3.2: Well readable (Listing 3.2a) vs. poorly readable (Listing 3.2b) Java
class files.

3.4 REDEC: Readability Decreaser 21

In Table 3.1 tab indentation refers to the process of adding a tab (\t) while
outdentation refers to the opposite, namely removing a tab (\t). For example:

1. The current tab count is 1 (\t⟨CODE⟩) (Listing 3.1a Line 7).

2. In the next line, we perform a tab indentation.

3. The current tab count is now 2 (\t\t⟨CODE⟩) (Listing 3.1a, Line 8).

4. In the next line, we perform a tab outdentation.

5. The current tab count is now 1 (\t⟨CODE⟩) (Listing 3.1a, Line 9).

REDEC performs one part of the modifications on the Abstract Syntax Tree (AST)
representation of the Java files. It executes another part when pretty-printing
the AST back into Java files. The first part is executed on the AST to ensure
functionality stays the same. For example, when REDEC renames a method, the
declaration and all references are renamed. The second part is not encoded in
the AST and is executed at the source code level after the reverse transformation.
For example, the AST does not encode line breaks. Changes to these line breaks
must be applied to the source code rather than the AST. You can see which
modifications are applied when in Table 3.2.

REDEC applies a modification to each occurrence of the object it refers to with a
specified probability. Due to the use of probabilities it can happen that no modific-
ation is applied. For example, we execute REDEC and set only removeComment

to a probability of 10 %. Then the tool removes each comment of the given Java
class files with a probability of 10 %. The exact amount of removed comments
is uncertain. It can happen (especially for short methods within the class files)
that a method is not changed at all. For example, if a method only has a single
comment and we use removeComment, the probability that the method is not
changed (besides the changes of just-pretty-print) is 90 %.

By default, REDEC generates the new identifiers for the rename modifications
(renameVariable, renameField, and renameMethod) in an iterating manner.
For each class file, we start with v0 for variables, f0 for fields, and m0. We increase
each index (zero at the beginning) by one whenever a name is used. We also
added a mode that uses Code2Vec [4] to generate identifiers for renameMethod
instead. With that, we can predict more realistic method names. Code2Vec
generates multiple method name predictions at once. By picking not the best
one but instead the one with the longest name, we aim to decrease readability
while choosing realistic method names.

REDEC does not support the removal of spaces, as this can cause keywords and
identifiers to merge, resulting in the code no longer compiling. For example,
consider the space between int and number in Line 6 in Listing 1.1. The result is

22 3 Mined and Modified Code for Dataset Generation

Table 3.2: Available Readability Decreasing Modifications along with their exe-
cution type (on AST or Code), their configuration type (an array of
probabilities or a single one), and whether they are included in the
final dataset. See Appendix B for a concrete configuration example.

Modification AST/Code Config. Type In Dataset

1 newline Code Array
2 incTab Code Array
3 decTab Code Array
4 space Code Array
5 newLineInsteadOfSpace Code Single
6 spaceInsteadOfNewline Code Single
7 incTabInsteadOfDecTab Code Single
8 decTabInsteadOfIncTab Code Single
9 renameVariable AST Single
10 renameField AST Single
11 renameMethod AST Single
12 inlineMethod AST Single
13 removeComment Code Single
14 add0 AST Single
15 insertBraces AST Single
16 starImport AST Single
17 inlineField AST Single
18 partiallyEvaluate AST Single

intnumber if we remove the space. Since this violates the syntax, the code no
longer compiles.

We exclude some of the modifications for the final dataset, as we can see in
Table 3.2. We exclude inlineMethod as it drastically increased the length of
methods and made the methods too long. While starImport might impact
the readability of class files, it has no impact on methods since, in Java, the
import statements are not within the methods. As we finally extract methods
for our dataset, starImport has no impact. We chose not to include add0,
insertBraces, inlineField, and partiallyEvaluate for the reason of a
limited survey capacity. For the same reason, we do not investigate the usage of
Code2Vec for renameMethod either.

The REDEC tool works with a configuration file in which one can specify a
probability for each available modification. For modifications of configuration

3.4 REDEC: Readability Decreaser 23

type Array (newline, incTab, decTab and space), we must define an array of
probabilities for the respective number of replacements. The probabilities of the
array must sum up to 1. For modifications of configuration type Single, a single
probability must be defined (Table 3.2). For example, spaceInsteadOfNewline
can be configured with 0.05, meaning that each space is replaced with a new line
(\n) with a probability of 5 %. space can be configured with [0.0, 0.7, 0.2, 0.1]
meaning that each space is replaced with

• no space with a probability of 0 %

• a single space with a probability of 70 % (no change)

• two spaces with a probability of 20 %

• three spaces with a probability of 10 %

We select the probabilities for the generated code snippets to be realistic, i.e.,
how humans could write them. We do this empirically by examining exem-
plary outputs of REDEC with different configurations. You can find the resulting
configurations in Table 3.3 and an exemplary file for just-pretty-print in Ap-
pendix B. all7 is the average of the other seven configurations: We add the prob-
abilities of the other seven configurations to one configuration, and each prob-
ability is divided by 7. There is an exceptional case regarding removeComment:
comments-remove and all7 use removeComment at 100 % for the user survey
(Section 4.3). The reason for this is that a method without comments is realistic.
For training and evaluation of the deep-learning model, we set the probability
to 10 % (for both affected configurations, all7 and removeComment) to avoid
shortcut learning (Section 4.4).

After applying REDEC to the Java files, we extract the methods. We require a
method comment for all methods (Section 3.3). We therefore use removeComment
after completing the method extraction.

3.5 CONSTRUCTION OF QUESTIONNAIRES

We evaluate the generated dataset and the new approach with a survey (Sec-
tion 4.3). However, we cannot assess all mined-and-modified methods as the
original methods consist of 39312 samples, and REDEC can apply infinitely
many configurations to each method. Therefore, we apply stratified sampling
(Section 2.8) [43], create specific configurations, and select the methods for our
survey based on the resulting strata. You can find an overview of the approach
in Figure 3.2.

24 3 Mined and Modified Code for Dataset Generation

Table 3.3: Chosen configurations and their probabilities for the Readability
Decreasing Modifications. For better readability, we write addX
and removeX instead of the array configurations. For example, we
write Add1Space: 20 % and Add2Spaces: 10 %, but the configuration is
space: [0.0, 0.7, 0.2, 0.1].

Configuration Probabilities
just-pretty-print -
comments-remove removeComment: 10 % or 100 %
newline-instead-of-space newLineInsteadOfSpace: 15 %
newlines-few removeNewline: 30 %

spaceInsteadOfNewline: 5 %
newlines-many add1Newline: 15 %

add2Newlines: 5 %
rename renameVariable: 30 %

renameField: 30 %
renameMethod: 30 %

spaces-many Add1Space: 20 %
Add2Spaces: 10 %
spaceInsteadOfNewline: 5 %

tabs remove1IncTab: 20 %
add1IncTab: 10 %
remove1DecTab: 10 %
add1DecTab: 10 %
incTabInsteadOfDecTab: 5 %
decTabInsteadOfIncTab: 5 %

all7 all probabilites/7

Stratified sampling: We want to categorize the Java methods to make it
easier to decide which ones to select. We also want to avoid over-representing
straightforward methods like Getters and Setters. Therefore, our first step is to
apply stratified sampling [43]. This allows us to divide the methods into groups,
so-called strata, based on handcrafted features (Section 2.2). Since we want to
compare the original methods with their modified variants later, we perform
the sampling only for the original methods and add the REDEC methods in a
later step.

We first calculate the handcrafted features for the original code snippets. We
therefore use a tool of Scalabrino et al. [36]. We calculate a 110-dimensional
feature vector for each original code snippet. Such features are, for example, the
average line length and the code snippet length. Next, we compute the cosine

3.5 Construction of Questionnaires 25

Configuration selection

Find realistic
configurations Pilot survey Adjust

configurations

Stratified sampling

Calculate code
features

Cosine similarity
matrix

Ward's
hierarchical
clustering

Survey crafting

Pick 40 original
methods

Find matching
methods Permutate

9
configurations

4
strata

 20
questionnaires à

20 methods

Figure 3.2: Steps performed to craft questionnaires from the mined-and-modified
dataset.

similarity matrix between all feature vectors using scikit9. The matrix contains
the similarity between all calculated vector pairs based on the cosine of the angle
between the vectors. The distance between multiple vectors is called the cosine
distance. Finally, we cluster the methods into an arbitrary amount of strata
using the fastcluster implementation [29] of Ward’s hierarchical clustering.

In each clustering step x, the two strata with the smallest cosine distance between
their feature vectors are merged into one. This distance is the merge distance
of the step, MDx. For further investigation, we also calculate the difference
between the merge distance and the merge distance of the previous step x− 1:

Difference to previous = MDx −MDx−1

For each step, you can find the merge distance and the difference to the previous
step in Figure 3.3.

The graph shows that a strata size of four makes the most sense: the merge
distance of 5 to 4 is small, so we should still perform this merge, but the merge
distance of 4 to 3 is large, so it is better not to perform this merge. In general,
other layer sizes are also suitable where the merge distance to the respective step
is small and to the next step is large. The difference to previous graph (Figure 3.3)
depicts those points as minima. Therefore, for example, 6 or 8 are also suitable.

9https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

pairwise.cosine_similarity.html, accessed: 2024-02-20

26 3 Mined and Modified Code for Dataset Generation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html

34567891011121314151617181920
Number of strata

0.4

0.6

0.8

1.0

1.2

M
er

ge
 d

is
ta

nc
es

Merge distances
Difference to previous

0.00

0.05

0.10

0.15

0.20

D
iff

er
en

ce
 to

 p
re

vi
ou

s

Figure 3.3: Merge distances and difference to previous merge distance. The
optimal difference to the previous merge distance is highlighted in
red.

Of these suitable sizes, a strata size of 4 is the last option with a small merge
distance before the number of strata becomes too small. We opted for 4 strata.

We identify the type of methods within each of the 4 strata as described in
Table 3.4. We also add the number of methods within each stratum. Stratum 0
contains simple methods, such as Getters and Setters. Stratum 1 consists of
the most complex methods across all strata. Stratum 2 comprises methods
containing numeric values with unexplained meanings, commonly called magic
numbers. Compared to the other strata, Stratum 2 has a smaller scope of 78
methods. Stratum 3 contains methods of medium complexity that exceed the
simplicity of the Getters and Setters in Stratum 0 but do not come close to the
complexity of the methods in Stratum 1. Overall, we split the methods according
to their complexity, ranging from simple (Stratum 0) to medium (Stratum 3) to
complex (Stratum 1), while Stratum 2 is a by-product.

Configuration selection: The next step is to find realistic configurations for the
REDEC tool. We select the first configurations by manually checking individual
outputs of REDEC. Then, we conduct a pilot study and adjust the configurations
based on the feedback. Table 3.3 shows the final 9 configurations. Together with
the original methods, this results in 10 groups.

Survey crafting: Finally, we craft the questionnaires from the strata. We
decided to provide all 10 configurations for each original method to compare
the original methods with their REDEC variants. We have a survey capacity

3.5 Construction of Questionnaires 27

Table 3.4: The strata properties (name, manually assigned type of methods, and
the method count) and the number of methods sampled for the survey
(in percent and the total count).

Properties Sampling
Name Type of Methods Count Percentage Count

Stratum 0 Simple methods 19016 10 % 4
Stratum 1 Complex methods 4280 40 % 16
Stratum 2 Magic number methods 78 10 % 4
Stratum 3 Medium complex methods 15938 40 % 16

Total 39312 100 % 40

All Stratum 0 Stratum 1 Stratum 2 Stratum 3
0%

10%

20%

30%

Fr
eq

ue
nc

y
in

 %

15.1%

25.4%

1.6%

25.8%

10.1%

Figure 3.4: Frequency of the case that a REDEC variant is not different from its
original method.

of 400 code snippets (Section 4.3). Therefore, the capacity for each REDEC
variant is 400/10 = 40 code snippets. We select 40 original code snippets and
add all their REDEC variants. We opt for a random sample within the strata.
However, we distribute the 40 snippets across the strata as shown in Table 3.4:
We sample 4 methods each from Stratum 0 and Stratum 2 and 16 from Stratum 1
and Stratum 3. We chose this approach because of the relatively high frequency
of methods that do not differ from their original methods in Stratum 0 and
Stratum 2 (Figure 3.4). Additionally, simple methods are rather uninteresting
for the classification of readability, as they can be generated (e.g., by IDEs) and
usually follow a straightforward pattern.

After selecting the 40 original methods, we next select all 9∗40 (#configurations
∗ #variant-capacity) REDEC variants that belong to the original methods. We do

28 3 Mined and Modified Code for Dataset Generation

this automatically based on the names of the original methods and the names of
the REDEC variant methods. If REDEC renamed the method at an earlier stage
due to the method renaming modification, the new method no longer matches
the original method, in which case we match them manually.

Once we collected all 400 methods, we distributed them across the 20 question-
naires, each with 20 methods. To avoid manipulating the raters, we decided
that a variant of each method must appear only once in each questionnaire. For
example, if the original method is in one questionnaire, the removeComment

variant (or another variant of the same method) must not be included in the
same questionnaire.

For this purpose, we create four permutation matrices with 10 snippets each.
We chose the number 10 because it is possible to distribute ten snippets, each
with 10 variants, across at least ten survey questionnaires without violating
our condition. Combining two 10-permutation matrices, we create 10 survey
questionnaires with 20 code snippets each. This approach implies that each
questionnaire contains each kind of variant exactly twice. We obtain the desired
distribution of 20 questionnaires with 20 methods each by doing this twice. Our
condition applies: Each questionnaire has only one variant of the same method.

Finally, we randomly shuffle the methods of each questionnaire within itself.
We do this to minimize the impact of the position of a snippet or variant within
a questionnaire on the rating.

3.6 READABILITY CLASSIFICATION MODEL

In this section, we describe our approach for investigating whether it is possible
to score a higher accuracy as the Towards model of Mi et al. [26] in classifying
code readability with the mined-and-modified dataset.

We implemented the model using Keras10. It uses three encodings: a code
representation encoding, a feature extraction encoding, and a code readability
classification encoding. Figure 3.5 shows the model architecture.

The input for the model is a labeled dataset consisting of code snippets and their
readability classes (poorly or well readable). In the code representation layer,
the model generates three different code representations from each code snippet:
A visual, a semantic, and a structural representation.

For the visual representation, we highlight the syntax of the code. Therefore,
Mi et al. assigned each type of syntactic element a color (Table 3.5).

10https://keras.io/about/, accessed: 2024-02-20

3.6 Readability Classification Model 29

https://keras.io/about/

Code representation

Visual:
Syntax

highlighting
RGB Matrix

Segment
embedding

ASCII Matrix

Semantic:
Token sequence

Structural:
Character

matrix

Feature extraction

CNN

CNN
and

BiLSTM

Word embedding
using BERT

CNN

Code readability classification

Fully connected
and dropout

layers

Readability
score

< limit

Well readable Poorly readable

Figure 3.5: The architecture of the Towards model of Mi et al. [26].

Table 3.5: The color encoding used by the visual component of the Towards
model [26].

Element Color Hex Code

Comment #006200

Keyword #fa0200

Identifier #01ffff

Literal #01ffff

Punctuation #fefa01

Operator #fefa01

Generics #fefa01

Whitespace #ffffff

Instead of highlighting the words in the respective color, as done by an IDE, the
words are replaced with color blocks (Figure 3.6b). Mi et al. used Eclipse11 to
highlight the code snippets and then they took screenshots of the code [26].

For the semantic representation, we split the code into tokens (e.g., keywords
and operators) and use BERT [12] to embed each token as a vector [26].

For the structural representation, we split the code into characters and convert
each into its ASCII value to obtain an ASCII matrix [26].

The model takes the three representations as input. We perform feature extrac-
tion on the RGB matrix and the ASCII matrix using a CNN for each.

11https://www.eclipse.org/, accessed: 2024-03-02

30 3 Mined and Modified Code for Dataset Generation

https://www.eclipse.org/

(a) An exemplary Java code snippet. (b) The visual encoding of the code snippet
in Figure 3.6a.

Figure 3.6: A code snippet and its visual encoding.

Each of the CNNs consists of multiple convolution and max pooling layers and
a single flatten layer [26].

On the token embedding, the model performs feature extraction using a BERT
embedding layer, convolution layers, a max pooling layer, and a Bidirectional
LSTM (BiLSTM) [26].

After extracting the features from the three individual representations, the output
is merged and used as input for the final step: code readability classification. In
this step, the model consists of multiple fully connected layers and a dropout
layer. The output is a single value, namely the readability score. If the score is
above a certain threshold, we classify the input as well readable. Otherwise, it is
poorly readable [26].

We implemented this model as described by Mi et al. [26] with a few adjustments:
In contrast to the publicly available code of Mi et al.12, our model includes (batch)
encoders required for the model to be trained on new data and to perform
the prediction task for new code snippets. In addition, our model supports
fine-tuning by freezing certain layers and storing intermediate results, such as
the encoded dataset. During the evaluation, the model returns the evaluation
statistics as a JSON file.

We made adjustments to the image encoding. To automate the generation of
visual encodings, we propose a different approach that leads to a similar result.
You can find an overview of our approach in Figure 3.7.

We first use Imgkit13 to convert the code to HTML. Therefore, we assign an
HTML class to each type of syntactic element. Next, we apply syntax highlight-

12https://github.com/swy0601/Readability-Features, accessed: 2024-02-20
13https://pypi.org/project/imgkit/, accessed: 2024-03-02

3.6 Readability Classification Model 31

https://github.com/swy0601/Readability-Features
https://pypi.org/project/imgkit/

Convert
to HTML

Convert
to image

Remove blur and
adjust padding

Code CSS

Apply CSS Convert
to tensor

Visual
encoding

Image of the
code

Figure 3.7: The steps to automatically, visually encode code.

ing using a CSS style sheet (Appendix D). In the third step, we use pygments14

to convert the HTML with the applied CSS to an image. We use pillow15 to
remove blur and adjust the padding of the image. Finally, we load the image
using opencv-python16, which allows us to convert the image to an RGB tensor
that is suitable as a model input. The advantages of our approach are that it is
fully automated and that the used colors can be adjusted easily via the CSS style
sheet (Appendix D).

During implementation, we encountered the following potential problems with
the model: The token length for the BERT encoding (BERT-base-cased17) used
in the model is 100. We investigate the implications of this, and therefore, we
first need to examine what a token comprises. In addition to special tokens that
mark the beginning [CLS] and the end [SEP] of the input, each word represents
a token. Furthermore, each special character is also represented as a token.
Special characters are slashes (/), parentheses ((,), {, }), commas (,), semicolons (;),
arithmetic signs (=, <, >) and many more. Java identifiers are split into several
tokens according to the upper and lower case conventions. If an identifier is
not present in the model’s vocabulary, the tokenizer splits it further into sub-
identifiers or characters in the vocabulary. For example, in Listing 3.3, Line 6, the
word ‘int’ is split into the tokens ‘in’ and ‘t’ as ‘int’ is not part of the vocabulary
of BERT-base-cased.

Consider the method from Listing 3.3a. With a token limit of 100, the last
encoded token is the last print in Line 12. Everything that comes after this is
not encoded, meaning the information is lost for the semantic part of the model.
Summarized, the model of Mi et al. only considers the first few lines of code
snippets in its semantic component.

14https://pygments.org/, accessed: 2024-03-02
15https://pypi.org/project/pillow/, accessed: 2024-03-02
16https://pypi.org/project/opencv-python/, accessed: 2024-03-02
17https://huggingface.co/google-bert/bert-base-cased, accessed: 2024-02-20

32 3 Mined and Modified Code for Dataset Generation

https://pygments.org/
https://pypi.org/project/pillow/
https://pypi.org/project/opencv-python/
https://huggingface.co/google-bert/bert-base-cased

1 /**

2 * This method determines the sign of a given number and prints a

corresponding message.↪→

3 *

4 * @param number The input number to be checked.

5 */

6 public static void checkNumberSign(int number) {

7 if (number > 0) {

8 System.out.println("Number is positive");

9 } else if (number < 0) {

10 System.out.println("Number is negative");

11 } else {

12 System.out.println("Number is zero");

13 }

14 }

(a) An example of a simple and well readable Java method.

1 [CLS] / * *

2 * This method determines the sign of a given number and prints a

corresponding message .↪→

3 *

4 * @ para m number The input number to be checked .

5 * /

6 public static void print S ign (in t number) {

7 if (number > 0) {

8 System . out . print ln (" Number is positive ") ;

9 } else if (number < 0) {

10 System . out . print ln (" Number is negative ") ;

11 } else {

12 System . out . print [SEP]

(b) The encoded-and-decoded variant of Listing 3.3a using BERT-base-cased with a limit
of 100 tokens. Space characters separate the tokens. Newlines are preserved for
readability.

Listing 3.3: A Java method and its encoded-and-decoded variant.

3.6 Readability Classification Model 33

The visual and structural encoders have similar limitations but to a smaller
extent. The structural encoder encodes the first 50 lines of each code snippet,
and the visual encoder encodes the first 43 lines. While the constraints for these
two encoders are long enough to capture most code snippets fully, the semantic
encoder is too limited in many cases.

Although we want to point out these limitations, we retain them to make our
results comparable with those of Mi et al.

34 3 Mined and Modified Code for Dataset Generation

4
Evaluation

4.1 RESEARCH QUESTIONS

We tested the mined-and-modified dataset in two ways. We conducted a user
study and evaluated the impact of using the dataset for the Towards model of Mi
et al. [26]. In detail, we answer the following questions with both experiments:

1. Does the well-readable-assumption (Assumption 1) hold?

2. Does the poorly-readable-assumption (Assumption 2) hold?

Our assumptions are as follows:

Assumption 1 (well-readable-assumption) The selected repositories contain
mostly well readable code.

Assumption 2 (poorly-readable-assumption) After applying REDEC, the
code is poorly readable.

Therefore, we come up with the following research questions:

Research Question 1: (mined-well) Can automatically mined code be assumed
to be well readable?

In our new approach for generating training data, we assume that the code from
repositories is well readable under certain conditions (Assumption 1). To check
whether that holds, we use the user study results.

Research Question 2: (modified-poor) Can poorly readable code be generated
from well readable code?

It is not sufficient to have only well readable code to train a classifier. We also
need poorly readable code. Therefore, we generate such code from the well
readable code. We investigate whether this is possible in principle and whether
REDEC (Section 3.4) can achieve this.

35

The modifications REDEC applies to the source code are heuristics. To answer
whether the generated code is poorly readable (Assumption 2), we utilize the
user study results.

Research Question 3: (new-data) To what extent can the new data improve
existing code readability classification models?

Previous research shows that Deep Learning models get better the more training
data is available [16]. This applies under the assumption that the quality of the
data is the same or at least similar. We want to check if the quality of our new
data is sufficient for improving the deep learning-based readability classifier of
Mi et al. [26]. We train their proposed model with combinations of the merged
and the mined-and-modified datasets and compare the results.

4.2 PILOT SURVEY

In the following section, we describe our pilot survey setup, possible threats to
validity, and results.

4.2.1 EXPERIMENTAL SETUP

We manually sampled 20 code snippets across all strata but mainly from Stratum 1
and Stratum 3 due to reasons mentioned in Section 3.5. Ten people participated
in the survey from January 6 to 14, 2024. Eight of them were students, and two
of them worked in the industry. All of them have computer science knowledge.
They were not paid to participate in the survey. Additionally to rating 20 code
snippets, the participants were also asked to answer further questions to provide
feedback about the survey:

1. Short answer : How long did it take you to complete the survey?

2. Single choice (1 (very unclear) to 5 (very clear)): How clear was your task?

3. Long answer: What problems were with the task? If there were none, leave
blank.

4. Long answer: What problems were there with the survey tool? If there
were none, leave blank.

5. Long answer: What improvements would you make to the survey? If none,
leave blank.

6. Long answer: Do you have any other feedback? If none, leave blank.

36 4 Evaluation

4.2.2 THREATS TO VALIDITY

The threats regarding the pilot survey are as follows:

External Validity: We did not sample the Java snippets for rating in a specific
or automated way, so there is a selection bias. Participants coming from a private
environment further exacerbate this bias. The results do not generalize.

Internal Validity: Ten people took part in the pilot survey. Due to the small
number of participants, it is impossible to draw reliable conclusions about the
strata or REDEC configurations. The results are sufficient to provide indications.

Construct Validity: The accuracy of the participants’ ratings for the code
snippets is uncertain. We see no incentive for participants to provide incorrect
ratings intentionally. We conclude to measure readability.

None of the mentioned threats have any impact, as we do not use the results of
this survey to evaluate our dataset generation approach. The intention of the
pilot survey was instead to prepare for the Prolific survey (Section 4.3).

4.2.3 RESULTS

We analyze the pilot survey results regarding three aspects: the time it took to
complete the survey, the feedback from the participants, and the ratings of the
selected code snippets.

Completion Time: Figure 4.1 shows the time it took the participants to com-
plete the pilot survey and thus to rate 20 code snippets according to their readab-
ility. The fastest participant completed the survey in 7 minutes and 35 seconds,
while the slowest participant took 18 minutes. Both the average value and the
mean value are around 12 minutes. Figure 4.1 shows that the completion times
are close together and there are no outliers. We suspect that the participants in
the pilot survey put more effort into completing the survey as we know them
personally. Other participants may not make as much effort, so we set the time
estimation for a questionnaire below average at 10 minutes.

Participant Feedback: All participant feedback regarding the pilot survey is
listed in Appendix A. Most of the problems were due to the survey tool (e.g., ‘I
also felt that I should use the drop-down menu at the top left.’). Some feedback
was regarding fully qualified class names, such as ‘Java.io.InputStream’. We
noticed that the Pretty Printer of the REDEC tool specified each imported method
or class with its fully specified classifier. For example, instead of ‘InputStream’,
‘Java.io.InputStream’ was written in the REDEC code snippets. The fully qualified
class names gave the participants the feeling that the code was not written by a

4.2 Pilot Survey 37

Pilot survey Prolific survey
0

5

10

15

20

25

30

35

T
im

e
(m

in
ut

es
)

Median

Figure 4.1: Time required to complete a questionnaire.

human and drastically reduced readability. Therefore, we adapted the REDEC
tool to print the shorter name.

Ratings: We adjusted the REDEC configurations. The rating for the last places
(Table 4.1), such as 1.2 for Stratum 1 - all, suggest that these code snippets were
particularly poorly readable. Thus, we re-examined the REDEC configurations
and found that some of them are over-configured. This not only affects their
readability but also makes them look as if human hands did not write them.
Therefore, we reduced the probabilities for these configurations.

After adjusting the REDEC configurations and the survey tool according to the
feedback, we launched the Prolific survey.

4.3 PROLIFIC SURVEY

This section summarizes the survey results conducted via Prolific1.

4.3.1 EXPERIMENTAL SETUP

We conducted the survey using Tien Duc Nguyen’s Code Annotation Tool
(Figure 4.2) along with the platform Prolific for recruiting and paying participants
between January 31 and February 7, 2024. A total of 221 participants took part.
Eleven participants answered each of the 20 questionnaires (similar to the survey
of Scalabrino et al. [36]). In one survey, we assigned one more participant by

1https://app.prolific.com/, accessed: 2024-02-21

38 4 Evaluation

https://app.prolific.com/

Table 4.1: Mean score ratings for the pilot survey.

Stratum REDEC configuration Score

Stratum 3 original 4.6
Stratum 0 tabs-few 4.3
Stratum 2 tabs-few 3.8
Stratum 1 original 3.7
Stratum 2 original 3.7
Stratum 3 newlines-many 3.3
Stratum 1 comments-remove 3.1
Stratum 0 spaces-few 3.0
Stratum 1 all4 3.0
Stratum 1 newlines-many 2.9
Stratum 1 spaces-few 2.6
Stratum 1 misc 2.4
Stratum 2 newlines-few 2.4
Stratum 1 tabs-few 2.2
Stratum 1 tabs-many 2.2
Stratum 1 spaces-many 2.1
Stratum 1 newlines-few 1.7
Stratum 3 tabs-many 1.7
Stratum 1 all2 1.3
Stratum 1 all 1.2

mistake. We include his results in the evaluation. We estimated the time to
complete one questionnaire at 10 minutes (Section 4.2). Prolific set the maximum
time allowed at 44 minutes. Participants who took longer received a time-out.
The resulting margin of error of 29.6 % means that the actual readability value of
a code snippet varies by up to 29.6 % in both directions from the evaluation result.
However, we aggregate over strata and multiple snippets later to reduce the
margin of error. Each questionnaire consists of 20 code snippets. Consequently,
400 different code snippets are rated in total. We configured the questionnaires in
a way that each participant could only take part in one of the questionnaires. You
can find the texts for the survey in Appendix C. We crafted the questionnaires
as described in Section 3.5.

The target population consists of Java programmers selected by Prolific. They
may be students or work in the industry. They can come from any country.
Overall, there were no requirements other than familiarity with Java.

4.3 Prolific Survey 39

Figure 4.2: Tien Duc Nguyen’s tool for rating a code snippet from the perspective
of a survey participant.

The internal research questions are as follows:

• Does the well-readable-assumption (Assumption 1) hold?

• Does the poorly-readable-assumption (Assumption 2) hold?

The results of these questions are equally important, and thus, we prioritize
none over the other. We consider the assumptions as hypotheses along with the
following associated null hypotheses:

• For Assumption 1: The mined code (original) is, on average, not better
readable than the code from previous studies.

• For Assumption 2: The readability of modified code does not significantly
deteriorate compared to the original code snippet.

40 4 Evaluation

The survey neither contained demographic questions nor filter questions. Be-
sides the readability questions, we asked each participant the following de-
pendent question: ‘How would you describe your familiarity with Java?’. The
participant could answer within a five-point Likert scale: Novice (1), Beginner
(2), Intermediate (3), Advanced (4), Expert (5).

4.3.2 THREATS TO VALIDITY

We identified the following threats:

External Validity: Due to our questionnaire construction approach (Sec-
tion 3.5), we have a larger proportion of code snippets from Stratum 1 and
Stratum 3 (Section 3.5). While we argue that we avoided spending resources
on labeling data that is likely not different from the original methods or rather
uninteresting, this might also introduce statistical errors to our survey results.
However, stratified sampling is well-defined and proven in practice. The ap-
proach ensures that our sample represents all parts of the population under
investigation. Ensuring a well-defined target population is critical to the survey’s
quality. To mitigate the threat of an inadequately defined target population, we
define it explicitly.

Internal Validity: To ensure a conclusion is drawn from sufficient responses,
we scaled our survey to an appropriate size. This guarantees we collect a
substantial volume of responses, allowing for robust statistical analysis. Survey
participants are paid to take part and complete a questionnaire. However, they
receive the same amount of money regardless of their speed. Therefore, they
receive more pay per minute if they hurry. This could impact the accuracy with
which they rated the code snippets. A comparison between the time required by
a participant for a pilot questionnaire and a Prolific questionnaire (Figure 4.1)
supports this argument. Especially the ratings of participants requiring less
than 3 minutes (Figure 4.3b) to complete a questionnaire could have a negative
impact on validity.

Construct Validity: The accuracy of the participants’ ratings for the code
snippets is uncertain. Apart from the already mentioned aspect that participants
might hurry, we see no incentive for participants to give false ratings deliberately.
We conclude to measure readability.

4.3.3 RESULTS

We analyze the results of the Prolific survey regarding three aspects: the time
it took to complete the survey, the participants’ familiarity with Java, and the
ratings about the REDEC configurations.

4.3 Prolific Survey 41

0 10 20 30
Time taken (minutes)

0

10

20

30

N
um

be
r

of
 p

ar
tic

ip
an

ts

Mean

(a) Time required by participants to com-
plete the survey.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Questionnaire

0

1

2

N
um

be
r

of
 p

ar
tic

ip
an

ts

(b) Participants per questionnaire requiring
less than 3 minutes.

Figure 4.3: Time analysis of participants completing the Prolific survey.

Completion time: You can find an overview of the time the participants
required in Figure 4.1 and Figure 4.3a. The fastest participant completed the
survey in 1 minute and 39 seconds, while the slowest participant needed about
38 minutes. The average time is 9 minutes and 45 seconds. The median time is 8
minutes and 30 seconds. Figure 4.1 shows that the completion times are not as
close together as in the pilot survey. There are a couple of outliers.

We pay attention to the number of participants who took less than three minutes
to complete a questionnaire (Figure 4.3b), assuming this is impossible without
randomly selecting answers. In almost all questionnaires, the number of parti-
cipants who took less than three minutes is either zero or one, while there is
only one questionnaire where two participants took less than three minutes.
Overall, only a few participants took less than three minutes. We assume that
most participants completed the survey with reasonable effort.

Familiarity with Java: In Figure 4.4, participants are divided into five Java
familiarity groups according to their answer options: Novice (1), Beginner (2),
Intermediate (3), Advanced (4), and Expert (5). Figure 4.4a shows the participants’
familiarity with Java according to their estimation. According to their estimation,
most participants (43.3 %) have intermediate Java knowledge. 29.0 % of the
participants stated that they are either advanced or experts in Java. This high
familiarity with Java suggests that the evaluation quality is high.

Figure 4.4b shows the time it took each Java knowledge group participant
to complete a questionnaire. While the median is similar for all groups, the
distribution varies. The Novices have the shortest completion times, followed
by the Beginners and the Experts. While there are no outliers for Novices and
Beginners, there are outliers for Intermediates, Advanced, and Experts.

42 4 Evaluation

Novice (1) Beginner (2) Intermediate (3) Advanced (4) Expert (5)
0%

10%

20%

30%

40%

50%
Pa

rt
ic

ip
an

ts
 in

 %

5.6%

22.1%

43.3%

23.8%

5.2%

(a) Distribution of participants among Java familiarity groups.

Novice (1) Beginner (2) Intermediate (3) Advanced (4) Expert (5)
 0

 5

 10

 15

 20

 25

 30

 35

T
im

e
(m

in
ut

es
)

Median

(b) Time required to complete a questionnaire per familiarity group.

Novice (1) Beginner (2) Intermediate (3) Advanced (4) Expert (5)
0.0

0.2

0.4

0.6

0.8

Ra
tin

g
de

vi
at

io
n

(c) Normalized and aggregated deviation of average ratings per familiarity group.

Figure 4.4: Familiarity of Prolific survey participants with Java overall (Fig-
ure 4.4a), against time required (Figure 4.4b) and against rating devi-
ation (Figure 4.4b)

4.3 Prolific Survey 43

We assume that some Novices and Beginners do not go into as much detail when
reading and are faster. Some Experts may read the given code snippets faster
than others due to their level of knowledge and thus need less time.

Figure 4.4c shows the rating deviations of the participants from the mean values
of the code snippets per Java familiarity group. The rating deviation is grouped
by adding up the deviations for each rater for each group and normalized by
dividing by the number of participants within each group. We see that the
variances of all groups are very similar. We performed an equivalence test using
one-way ANOVA with an equivalence margin of 0.05 [41]. The margin signifies
that we consider two rating deviations as equivalent if they do not differ by more
than 0.05. We obtain a p-value of 0.02. This is smaller than 5 % = 0.05. The
ratings for the familiarity groups are equivalent to this equivalence margin. We
conclude that the quality of the ratings for all familiarity groups is equivalent.

Even though there are differences regarding outliers and completion time vari-
ation (Figure 4.4b), the rating quality of groups does not differ between the
groups (Figure 4.4c). Overall, the analysis of the Java familiarity groups in
Figure 4.4 suggests that the overall quality of the ratings received is high.

Ratings: You can find the ratings for each REDEC configuration for all strata
in Figure 4.5. We added the ratings of the merged dataset for comparison.
Figure 4.5a visualizes the rating distribution for each score from 1 to 5. It also
shows the mean value and mode of the ratings for each variant. To facilitate
comparison with the original methods, the mean value of the ratings of the
original methods is marked with a red dashed line. The original methods
and the just-pretty-print methods are the most frequently rated with a
score of 4, and their mean values of 3.69 and 3.67 are comparatively the highest.

In line with our expectation, we see that the ratings for just-pretty-print
and original only differ by a negligible amount of 0.02. Using two one-sided
t tests we showed that just-pretty-print and original are equivalent [38].
The obtained p-value of 0.03 is smaller than 0.05 when we use an equivalence
margin of 0.15. The margin signifies that we consider two ratings equivalent
if they do not differ by more than 15 % of a single-star rating. Therefore, we
are sure that it was not the Pretty Printer but the modifications that caused the
differences in readability.

The violins of Figure 4.5a illustrate the distribution of the ratings in detail.
The evaluators could only rate the discrete values from 1 to 5. The deflections
of the violins in between are for better visualization. The figure shows that
for original and just-pretty-print, most of the ratings are 3, 4, or 5. In
addition, the violins of merged and all7 look similar, with the latter having
more 2-ratings. The violins of newlines-many, rename and spaces-many

44 4 Evaluation

m
er

ge
d

or
ig

in
al

ju
st

-p
re

tt
y-

pr
in

t

al
l7

co
m

m
en

ts
-r

em
ov

e

ne
w

lin
e-

in
st

ea
d-

of
-s

pa
ce

ne
w

lin
es

-f
ew

ne
w

lin
es

-m
an

y

re
na

m
e

sp
ac

es
-m

an
y

ta
bs

1

2

3

4

5

Re
ad

ab
ili

ty
 r

at
in

g

 3.34
 3.69 3.67

 3.26
 3.44 3.33 3.32

 3.58 3.55 3.53
 3.25

Mode of each configuration
Mean of each configuration
Mean of merged

(a) Survey ratings for each REDEC configuration and all strata.

m
er

ge
d

or
ig

in
al

ju
st

-p
re

tt
y-

pr
in

t

al
l7

co
m

m
en

ts
-r

em
ov

e

ne
w

lin
e-

in
st

ea
d-

of
-s

pa
ce

ne
w

lin
es

-f
ew

ne
w

lin
es

-m
an

y

re
na

m
e

sp
ac

es
-m

an
y

ta
bs

0.4

0.3

0.2

0.1

0.0

Re
ad

ab
ili

ty
 r

at
in

g

(b) Relative survey ratings for each REDEC configuration and all strata compared to all
original methods.

Figure 4.5: Survey ratings for each REDEC configuration and all strata. Addi-
tionally, merged is added.

4.3 Prolific Survey 45

show more better (3, 4 and 5) and less worse (1 and 2) ratings than the ones of
comments-remove, newlines-instead-of-space, newlines-few and tabs.

Figure 4.5a also shows that the mean value of the original methods is 3.69, and
the mean value of the merged dataset is 3.34. The difference of 0.35 has statistical
significance: We perform a Mann-Whitney-U-Test for the rating values of the
40 original code snippets of the mined-and-modified dataset against all rating
values of the merged dataset. The resulting p-value is 1.11× 10−9, far below
the 5 % = 5.00× 10−2 threshold, confirms statistical significance.

Summary (RQ 1 - mined-well)

The mean score for the original methods of the mined-and-modified
dataset (3.69) is significantly larger than the mean score for all ratings in
the merged dataset (3.34). Therefore, we reject the null hypothesis and
conclude that the well readable assumption (Assumption 1) holds.

Figure 4.5b shows the differences in mean values compared to the original

methods. REDEC reduces the readability for the configurations all7,
comments-remove, newlines-instead-of-space, newlines-few and tabs

the most. The tool also reduces readability for newlines-many, rename, and
spaces-many, but not as much. To determine whether the deviations are stat-
istically significant, we utilized the Mann-Whitney-U-Test. We compare the
ratings for all snippets for a REDEC configuration with the corresponding
just-pretty-print snippets. Table 4.2 shows the results. We can be sure
that the scores of all methods except newlines-many and rename are indeed
statistically different from the scores of just-pretty-print.

If we consider binary readability classification and split the data into two classes
(poorly readable: 1,2; well readable: 3-5), all but rename are statistically different
from just-pretty-print. This includes newlines-many (p-value = 0.035 =
3.5 % < 5 %) for which we could not confirm statistical difference without
binary classification. Besides just-pretty-print, this leaves rename where
we can not confirm statistical significance. Overall, we showed that REDEC
reduces the readability of source code.

Summary (RQ 2 - modified-poor)

All of the seven configurations but rename decrease readability by a
significant extent compared to just-pretty-print. We estimate the
readability decreases for a certain probability of a particular type, as
visualized in Figure 4.5b. We reject the null hypothesis and conclude that
the poorly readable assumption (Assumption 2) holds.

46 4 Evaluation

Table 4.2: Mann-Whitney-U-Test results of each REDEC configuration against
just-pretty-print. When the p-value is smaller than 5% = 5.00×
10−2 (bold) we conclude that the difference is significant.

Comparison against p-value

methods 9.22× 10−1

newlines-few 5.23× 10−6

spaces-many 4.07× 10−2

newlines-many 3.00× 10−1

comments-remove 3.64× 10−3

rename 9.90× 10−2

newline-instead-of-space 4.57× 10−6

tabs 3.06× 10−8

all7 1.80× 10−7

4.4 MODEL TRAINING

In the following, we describe our setup and the model training results.

4.4.1 EXPERIMENTAL SETUP

We use the notation (train-evaluate) to describe on which dataset the To-
wards model [26] is trained and evaluated. We aim to investigate the following
things:

1. Model evaluation: To confirm that our implementation of the model scores
similar accuracy as the original one of Mi et al. [26], we train and evaluate the
model on the merged dataset (merged-merged).

2. Internal evaluation: To investigate how the model captures the readability
aspects of the mined-and-modified (short: mam) dataset, we train and evaluate it
on this dataset (mam-mam). We examine how effectively the model captures the
differences between original and all7, which are modified with REDEC.

3. Cross evaluation: To assess how effective the mined-and-modified dataset is
for predicting readability, we train the model on the mined-and-modified dataset
and then evaluate its performance on the merged dataset (mam-merged). We
train the model on the merged dataset and evaluate it on the merged dataset
(merged-merged) and the mined-and-modified dataset (merged-mam).

4.4 Model Training 47

Table 4.3: Performance of different dataset configurations for the same model.
finetune is training on the mined-and-modified dataset and fine-
tuning on the merged one.

Train Eval Acc Prec Rec AUC F1 MCC

merged merged 84.7 % 87.7 % 82.3 % 85.0 % 83.7 % 70.4 %
mam mam 92.2 % 92.3 % 92.0 % 92.2 % 92.2 % 84.4 %
mam merged 61.9 % 66.7 % 54.5 % 60.6 % 60.0 % 24.8 %
merged mam 56.8 % 54.7 % 78.7 % 66.7 % 64.6 % 15.2 %
finetune merged 83.3 % 84.3 % 79.1 % 81.7 % 81.1 % 63.7 %

4. Fine-tuning: To assess the accuracy we can score in predicting readability,
we investigate training on the mined-and-modified dataset and fine-tuning and
evaluating on the merged dataset (finetune-merged).

4.4.2 RESULTS

Table 4.3 specifies on which dataset we train (Train) and on which dataset
we evaluate (Eval) the Towards model. The table shows the results for each
combination using the following evaluation metrics: Accuracy (Acc), Precision
(Prec), Recall (Rec), Area under the Curve (AUC), F1-Score (F1) and the Matthews
Correlation Coefficient (MCC) [9].

1. Model evaluation: We train and evaluate the model on the merged dataset
(merged-merged) and obtain an accuracy of 84.7 % . This is similar to the results
of Mi et al. (84.7 % vs 85.3 %). The deviation of 0.6 % accuracy might be due to
the randomness of the splits for 10-fold cross-validation. We can confirm the
results of the paper [26].

2. Internal evaluation: We train and evaluate the model on the mined-and-
modified dataset (mam-mam) and obtain an average accuracy of 92.2 %. The
Towards model architecture is well suited for learning the structure of the
mined-and-modified dataset. It learns the differences between the original

and all7 methods and how to predict whether REDEC modified a code snippet.

3. Cross evaluation: We train the model on the mined-and-modified dataset
and evaluate it on the merged dataset (mam-merged). We obtain an accuracy
of 61.9 %. This is 22.8 % worse than the accuracy we get when we train and
evaluate the model on the merged dataset (merged-merged). When we train
the model on the merged dataset and evaluate it on the mined-and-modified one
(merged-mam), we get an accuracy of 56.8 %, close to the approximate accuracy

48 4 Evaluation

of 50.0 % of a random classifier. If the scores for mam-merged, merged-merged,
and merged-mam would be similar, we would conclude that both datasets, the
merged and the mined-and-modified one, address readability in general. Since
this is not the case, we address different aspects of readability.

4. Fine-tuning: We tried to fine-tune the merged dataset by freezing
different layers of the model trained with the mined-and-modified dataset
(finetune-merged). We achieved the best results during the evaluation by
freezing the input layers and the first convolution and pooling layers of all
encoders. However, when evaluated on the merged dataset, the performance is
still worse than the merged-merged variant. We assume the model is too small
to be effective with the larger dataset. Introducing more or bigger layers so that
the model can store more features internally could lead to an improvement. This
is not part of this work, in which we mainly focus on a new dataset.

Summary (RQ3 - new-data)

When trained with the mined-and-modified dataset and evaluated on the
merged dataset, the model achieves an accuracy of 61.9 %. For comparison:
When trained and evaluated using the merged dataset, the model achieves
an accuracy of 84.7 %. We conclude that the mined-and-modified dataset
does not improve code readability classification using the Towards model.

4.4 Model Training 49

5
Discussion

Our survey (Section 4.2) shows that the mined-and-modified dataset captures
readability. The model training results (Section 4.4) show that the mined-and-
modified dataset captures different aspects of readability compared to the merged
dataset. The question arises as to what the different aspects are and whether it
is possible to extend REDEC (Section 3.4) to capture the same aspects. By doing
so, we assume we could achieve better evaluation results on the merged dataset
than previous models.

After training with the mined-and-modified dataset, we fine-tune the model
with the merged dataset and evaluate it on the merged dataset (Section 4.4). We
expect the classification accuracy of the resulting model to exceed that of the
model trained on the merged dataset only. Our expectations are not met. This
could be because the Towards model structure is designed for a much smaller
dataset and, therefore, cannot capture all the features of the mined-and-modified
dataset while allowing for fine-tuning.

When merging existing datasets into a single dataset (Section 3.1), we set the
readability score of a code snippet as the mean value of all its ratings. As only
a limited number of people participated in each survey, this may introduce
errors due to statistical deviations. Furthermore, the surveys were conducted
under different conditions, e.g., different raters, numbers of raters per snippet,
rater biases, and code scopes. When merging the datasets, we do not take
these inequalities into account. This could lead to a bias in the merged dataset.
However, previous approaches did this similarly.

The main advantage of our approach is the automation of data generation. This
comes with a drawback: The score labels of the methods of the mined-and-
modified dataset are estimations and not exact values (Section 3.3). However,
accurate ratings would require human annotators to manually review 69k code
snippets, which is not feasible. In addition, with two-class classification, we
need to distinguish between well and poorly readable code, which we can do
without exact labels.

51

We tried to choose the configurations for REDEC to make the modified code
snippets realistic, but we did not investigate whether they are (Section 3.4). One
goal was to exceed the classification accuracy with our dataset through fine-
tuning, and for this goal, it is a secondary aspect that the snippets are realistic.
We decided not to ask for realism in our study due to resource limitations. If
we use the dataset beyond the training of a model, we must investigate to what
extent our modifications change the realism of code snippets.

The probabilities for removeComments for the survey and the model training
dataset differ (Section 3.3 and Section 3.4). When conducting the survey, we
argued that realistic methods do not require comments. Therefore, we set the
probability for removeComments to 100 %. However, applying the model training
led to shortcut learning of whether a method starts with a comment instead of
learning to distinguish based on all applied modifications. Therefore, we adopted
REDEC so that removeComments is not applied to the Java files. Instead, we
applied it separately after the method extraction with a probability of 10 %. Thus,
the configurations commentsRemove and all7 of the survey results (Section 4.3)
do not exactly match the configurations of the model training (Section 4.4). We
hardly rely on the survey results to train the model. Thus, this is a minor threat.

By modifying code, REDEC introduces patterns for poor readability (Section 3.4).
For example, comments-remove removes a comment. This allows the classifier
to decide that a method without a comment is poorly readable. Patterns from
changes that alter line breaks, spaces, and tabs are more complex to infer, but
we suggest they are present. One could argue that the individual patterns are
shortcuts the classifier can learn to determine readability. However, combining
these patterns requires the model to learn all of them. We suggest that the model
overcomes shortcuts and learns code features instead. These features determine
the readability of code, as our survey results showed (Section 4.3).

When comparing the model performance trained on the mined-and-modified and
merged dataset, note that the merged dataset is small (Section 3.1). Consequently,
comparisons to classifiers trained on the merged dataset may be unreliable.

We use a state-of-the-art model to evaluate the mined-and-modified dataset (Sec-
tion 4.4). We chose the Towards model due to its high accuracy and use of
different encodings to represent the code snippets (Section 3.6). Evaluation
using this single model does not allow generalization to all readability classifica-
tion models. We must consider other state-of-the-art models or encodings for
further and more general evaluation of our dataset.

52 5 Discussion

6
Conclusions and Future Work

Recent research in code readability classification focused on various deep learn-
ing model architectures to further improve accuracy. Researchers paid little
attention to the fact that only 421 labeled code snippets are available to train
these models. We introduced a novel approach to generate data with which
we created a dataset of 69k code snippets (Chapter 3). Although our results
show that the mined-and-modified dataset does not capture the same aspects of
readability as the merged dataset (Chapter 4), it still captures readability and
could help improve the readability classification of code in future research.

The new approach for generating data has an advantage not yet used in this
work: For the first time, it is possible to generate a dataset with one well readable
and a second, less readable, and functionally equivalent code snippet. This could
be used to train various models, including Transformers. Such a Transformer
could take the code as input and improve its readability. We suspect that such a
tool could be of great benefit to programmers.

A current limitation of the mined-and-modified dataset is that it only works
for Java code. We suggest to overcome this limitation by extending the tool to
other programming languages. This is a complex task, as one has to adapt the
Readability Decreaser to work with another language. Furthermore, a general
tool that works for all languages is difficult or impossible.

As Mi et al. suggested, another well-working representation for code readability
studies could be the syntax tree representation of code [21]. One could try
to improve the performance of the Towards model [26] by adding another
representation encoding extractor for Java code that automatically extracts the
Abstract Syntax Tree of the code.

An essential aspect of the readability of code is the naming. The method names
are the most critical part of the scope of methods. Therefore, adding a component
that explicitly considers how well a method name matches its body could improve
the Towards model. This component might be similar to Code2vec [4].

53

Further research could consist of finding and evaluating other encodings that
represent the code readability or developing a different structure for some layers
of the models. We suggest increasing the size and depth of the layers so that the
mined-and-modified dataset can be made useful.

The modifications described in this work (Section 3.4) are part of the possible
modifications that can be developed. Additional modifications could further
improve the diversity of poorly readable code. This could increase the number
of internal features that a model can learn, which in turn could increase the
accuracy of the model.

REDEC supports two ways of renaming identifiers: an iterative method and using
Code2Vec for method names (Section 3.4). In the iterative approach, the names
are shortened in many cases (e.g., v0 or m0). We remove the meaning encoded
in the name of the identifier, which should make it less readable. However, short
method names tend to increase readability, which contradicts our objective. The
Code2Vec approach only supports method names and is very limited. Since both
approaches have drawbacks, this suggests that another way of determining the
target identifier must be developed.

Our new dataset comprises a large amount of data to train readability deep
learning classifiers. When integrated into an IDE, this gives developers feedback
on the readability of their code [10], allowing them to measure and improve
the readability of their code. The code becomes more readable, which enables
efficient collaboration, comprehension, and maintenance [32, 1]. In addition,
readability is the most time-consuming act in software maintenance and con-
sumes over 70 % of the total lifecycle cost of a software product [8, 11, 35, 6].
Therefore, our dataset can contribute to reducing software costs in the future.

In summary, there are many opportunities to investigate further and, thus,
improve the classification of code readability. Our new dataset and the generation
approach serve as a foundation for this.

54 6 Conclusions and Future Work

Eigenständigkeitserklärung

Hiermit versichere ich, Lukas Krodinger,

1. dass ich die vorliegende Arbeit selbstständig und ohne unzulässige Hilfe
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt, sowie die wörtlich und sinngemäß übernommenen Passagen aus
anderen Werken kenntlich gemacht habe.

2. Außerdem erkläre ich, dass ich der Universität ein einfaches Nutzungs-
recht zum Zwecke der Überprüfung mittels einer Plagiatssoftware in
anonymisierter Form einräume.

Passau, 26. März 2024
Lukas Krodinger

55

Bibliography

[1] Krishan K Aggarwal, Yogesh Singh and Jitender Kumar Chhabra. ‘An
integrated measure of software maintainability’. In: Annual Reliability
and Maintainability Symposium. 2002 Proceedings (Cat. No. 02CH37318).
IEEE. 2002, pp. 235–241.

[2] Miltiadis Allamanis, Henry Jackson-Flux and Marc Brockschmidt. ‘Self-
Supervised Bug Detection and Repair’. In: Advances in Neural Inform-
ation Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. by
Marc’Aurelio Ranzato et al. 2021, pp. 27865–27876.

[3] Miltiadis Allamanis, Hao Peng and Charles Sutton. ‘A Convolutional
Attention Network for Extreme Summarization of Source Code’. In: Pro-
ceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016. Ed. by Maria-Florina Bal-
can and Kilian Q. Weinberger. Vol. 48. JMLR Workshop and Conference
Proceedings. JMLR.org, 2016, pp. 2091–2100.

[4] Uri Alon et al. ‘code2vec: Learning distributed representations of code’.
In: Proceedings of the ACM on Programming Languages 3.POPL (2019),
pp. 1–29.

[5] Kent Beck. Implementation patterns. Pearson Education, 2007.

[6] Barry Boehm and Victor R Basili. ‘Defect reduction top 10 list’. In: Com-
puter 34.1 (2001), pp. 135–137.

[7] Frederick Brooks Jr. ‘No Silver Bullet Essence and Accidents of Software
Engineering’. In: IEEE Computer 20 (Apr. 1987), pp. 10–19.

[8] Raymond PL Buse and Westley R Weimer. ‘Learning a metric for code
readability’. In: IEEE Transactions on software engineering 36.4 (2009),
pp. 546–558.

[9] Davide Chicco and Giuseppe Jurman. ‘The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classi-
fication evaluation’. In: BMC genomics 21.1 (2020), pp. 1–13.

57

[10] Sangchul Choi, Sooyong Park et al. ‘Metric and tool support for instant
feedback of source code readability’. In: Tehnički vjesnik 27.1 (2020),
pp. 221–228.

[11] Lionel E Deimel Jr. ‘The uses of program reading’. In: ACM SIGCSE Bulletin
17.2 (1985), pp. 5–14.

[12] Jacob Devlin et al. ‘BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding’. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, 2019, pp. 4171–4186.

[13] Brendan Dolan-Gavitt et al. ‘Lava: Large-scale automated vulnerability
addition’. In: 2016 IEEE symposium on security and privacy (SP). IEEE. 2016,
pp. 110–121.

[14] Jonathan Dorn. ‘A General Software Readability Model’. In: University of
Virginia (2012).

[15] Sarah Fakhoury et al. ‘Improving source code readability: Theory and
practice’. In: 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). IEEE. 2019, pp. 2–12.

[16] Joel Hestness et al. Deep Learning Scaling is Predictable, Empirically. Dec.
2017.

[17] Rensis Likert. ‘A technique for the measurement of attitudes.’ In: Archives
of psychology (1932).

[18] Benjamin Loriot, Fernanda Madeiral and Martin Monperrus. ‘Styler: learn-
ing formatting conventions to repair Checkstyle violations’. In: Empirical
Software Engineering 27.6 (2022), p. 149.

[19] Robert C Martin. Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[20] Qing Mi. ‘Rank Learning-Based Code Readability Assessment with Sia-
mese Neural Networks’. In: Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. 2022, pp. 1–2.

[21] Qing Mi et al. ‘A graph-based code representation method to improve
code readability classification’. In: Empirical Software Engineering 28.4
(2023), p. 87.

[22] Qing Mi et al. ‘An enhanced data augmentation approach to support
multi-class code readability classification’. In: International conference on
software engineering and knowledge engineering. 2022.

58 Bibliography

[23] Qing Mi et al. ‘An inception architecture-based model for improving
code readability classification’. In: Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018.
2018, pp. 139–144.

[24] Qing Mi et al. ‘Improving code readability classification using convo-
lutional neural networks’. In: Information and Software Technology 104
(2018), pp. 60–71.

[25] Qing Mi et al. ‘The effectiveness of data augmentation in code readab-
ility classification’. In: Information and Software Technology 129 (2021),
p. 106378.

[26] Qing Mi et al. ‘Towards using visual, semantic and structural features
to improve code readability classification’. In: Journal of Systems and
Software 193 (2022), p. 111454.

[27] Qing Mi et al. ‘What makes a readable code? A causal analysis method’.
In: Software: Practice and Experience 53.6 (2023), pp. 1391–1409.

[28] F.P. Miller, A.F. Vandome and M.B. John. Abstract Syntax Tree. VDM
Publishing, 2010.

[29] Daniel Müllner. ‘fastcluster: Fast hierarchical, agglomerative clustering
routines for R and Python’. In: Journal of Statistical Software 53 (2013),
pp. 1–18.

[30] Delano Oliveira et al. ‘Evaluating code readability and legibility: An exam-
ination of human-centric studies’. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE. 2020, pp. 348–359.

[31] Renaud Pawlak et al. ‘Spoon: A library for implementing analyses and
transformations of Java source code’. In: Software: Practice and Experience
46.9 (2016), pp. 1155–1179.

[32] Daryl Posnett, Abram Hindle and Premkumar Devanbu. ‘A simpler model
of software readability’. In: Proceedings of the 8th working conference on
mining software repositories. 2011, pp. 73–82.

[33] Michael Pradel and Koushik Sen. ‘Deepbugs: A learning approach to
name-based bug detection’. In: Proceedings of the ACM on Programming
Languages 2.OOPSLA (2018), pp. 1–25.

[34] Talita Vieira Ribeiro and Guilherme Horta Travassos. ‘Attributes influen-
cing the reading and comprehension of source code–discussing contra-
dictory evidence’. In: CLEI Electronic Journal 21.1 (2018), pp. 5–1.

[35] Spencer Rugaber. ‘The use of domain knowledge in program understand-
ing’. In: Annals of Software Engineering 9.1-4 (2000), pp. 143–192.

Bibliography 59

[36] Simone Scalabrino et al. ‘A comprehensive model for code readability’.
In: Journal of Software: Evolution and Process 30.6 (2018), e1958.

[37] Simone Scalabrino et al. ‘Automatically assessing code understandability:
How far are we?’ In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2017, pp. 417–427.

[38] Donald J Schuirmann. ‘A comparison of the two one-sided tests procedure
and the power approach for assessing the equivalence of average bioavail-
ability’. In: Journal of pharmacokinetics and biopharmaceutics 15 (1987),
pp. 657–680.

[39] Milan Segedinac et al. ‘Assessing code readability in Python programming
courses using eye-tracking’. In: Computer Applications in Engineering
Education 32.1 (2024), e22685.

[40] Shashank Sharma and Sumit Srivastava. ‘EGAN: An Effective Code Read-
ability Classification using Ensemble Generative Adversarial Networks’.
In: 2020 International Conference on Computation, Automation and Know-
ledge Management (ICCAKM). IEEE. 2020, pp. 312–316.

[41] Barbara G Tabachnick, Linda S Fidell and Jodie B Ullman. Using multivari-
ate statistics. Vol. 6. pearson Boston, MA, 2013.

[42] Yahya Tashtoush et al. ‘Impact of Programming Features on Code Readab-
ility’. In: International Journal of Software Engineering and Its Applications
7 (2013), pp. 441–458.

[43] Steven K Thompson. Sampling. Vol. 755. John Wiley & Sons, 2012.

[44] Antonio Vitale et al. ‘Using Deep Learning to Automatically Improve
Code Readability’. In: 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2023, pp. 573–584.

[45] Greg Wilson and Andy Oram. Beautiful code: Leading programmers explain
how they think. " O’Reilly Media, Inc.", 2007.

[46] Michihiro Yasunaga and Percy Liang. ‘Graph-based, Self-Supervised Pro-
gram Repair from Diagnostic Feedback’. In: Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR,
2020, pp. 10799–10808.

60 Bibliography

A
Pilot Survey Feedback

How clear was your task? (1 = Very Unclear, 5 = Very Clear)

1 2 3 4 5
Level of clarity

0

1

2

3

4

5

N
um

be
r

of
 r

at
in

gs

What problems were with the task? If there were none, leave blank.

• Did at first not know where to rate the code.

• I was confused about the textfield for the comments because I only re-
membered that we should rate the code snippets, not that we have to make
comments. Since I was not able to navigate back to the task description, I
did not know what to do with them.

• Translated from German: In my opinion, the code is too complicated for a
beginner with very little Java experience.

• In the first place, I didn’t really understand what readability meant. But
after slide 3 or 4, I understood what this was about.

• I found it difficult to categorize the first examples because you don’t know
what’s still to come. For example, what the least readable code is.

61

What problems were there with the survey tool? If there were none,
leave blank.

• Mobile is not easy to use because of the scrolling needed to complete the
survey.

• First, I needed to figure out how this tool works and that the rating is done
with the stars below. I thought I should write my rating as a comment in
the comment field below. After number 20, I didn’t know whether I could
close the survey or not.

• I also thought that I should use the drop-down menu on the upper left.

• It is sometimes necessary to swipe horizontally to see all of the code,
which is a bit inconvenient.

• Translated from German: In my opinion, the tool is not suitable for begin-
ners. The code is too convoluted and sometimes incomprehensible.

• After finishing the task, at least a message should be shown.

• I didn’t understand what the button at the top left meant, where you could
select the programming language. There were too many fonts to choose.
I also wasn’t sure whether to write a comment or not. It wasn’t described
at the beginning.

What improvements would you make to the survey? If none, leave blank.

• Maybe one sentence that one should use the stars for the rating, then it
would be clear. Also, the submit note after the last question could contain
that one can close the survey now.

• I suggest making the task description accessible during the rating.

• Maybe the option to leave the survey when clicking to submit.

• Mehr Hilfestellung zum Lesen des Codes. Mehr Beschreibung oder ein
zusätzliches Cheat Sheet mit Bedeutungen von Befehlen.

• I think it’s a good idea to ask the participant at the beginning to explain
what readability means for him.

• I would leave out the buttons described above. I was missing a scrollbar
at the bottom of the code-window. A conclusion page with a message
like "Thank you for your participation", "You’re Done!" or other further
information was missing, too.

62 Pilot Survey Feedback

Do you have any other feedback? If none, leave blank.

• There were drop downs for the programming language, but choosing
another language did not change anything. It was a bit confusing that
(almost?) all code snippets had very long imports within the code, which
made them poorly readable.

• I spent the most time understanding methods with complete Java import
names. (org.foo.bar.ClassName).

• GOOD LUCK

63

B
REDEC Configuration File

1 newline:

2 - 0.0 # Probability for no newline

3 - 1.0 # Probability for one newline

4 incTab:

5 - 0.0 # Probability for no tab

6 - 1.0 # Probability for one tab

7 decTab:

8 - 0.0 # Probability for no tab

9 - 1.0 # Probability for one tab

10 space:

11 - 0.0 # Probability for no space; Must be 0.0

12 - 1.0 # Probability for one space

13 newLineInsteadOfSpace: 0

14 spaceInsteadOfNewline: 0

15 incTabInsteadOfDecTab: 0

16 decTabInsteadOfIncTab: 0

17 renameVariable: 0

18 renameField: 0

19 renameMethod: 0

20 inlineMethod: 0

21 removeComment: 0

22 add0: 0

23 insertBraces: 0

24 starImport: 0

25 inlineField: 0

26 partiallyEvaluate: 0

65

C
Prolific Survey Texts

On Prolific:

Readability of Java Code

We study the readability of Java source code. Therefore, please read Java methods
and rate their readability on a scale from 1 (very unreadable) to 5 (very readable).

At the top of the tool:

Readability of Java Code

Read the Java methods and rate their readability on a scale from 1 (very un-
readable) to 5 (very readable) using the stars below the code box. To navigate
between methods, use the arrows above or below the code box. Make sure to
rate each snippet.

Introduction page 1:

This study aims to investigate the readability of Java source code. In this survey,
we will show you 20 Java methods. Please read the methods thoroughly and rate
how readable you think they are. Before we begin, please answer the following
question:

How would you describe your familiarity with Java?

1. Expert

2. Advanced

3. Intermediate

4. Beginner

5. Novice

67

Introduction Page 2:

Below is an example of the interface for displaying and rating the code. Use the
stars below the code box for your rating. Please rate the readability on a scale
from 1 (very unreadable) to 5 (very readable). At the top left, you can adjust
the syntax highlighting and theme (dark/light) according to your preferences
(optional). Comments are not available during this survey.

[EXAMPLE]

Introduction Page 3:

This survey should take about 10 minutes to complete. Now you are ready to
go!

68 Prolific Survey Texts

D
Towards Model - Visual Encoding Colors

The following CSS was used to generate the background colors for the visual
encoding. You can find an overview over all tokens on the pygments homepage1.

1 /* Comment Styles */

2 .c, .ch, .cm, .cp, .cpf, .c1, .cs {

3 background-color: #006200;

4 color: #006200;

5 }

6

7 /* Keyword Styles */

8 .k, .kc, .kd, .kn, .kp, .kr, .kt {

9 background-color: #fa0200;

10 color: #fa0200;

11 }

12

13 /* Parentheses, Semicolon, Braces Styles */

14 .p, .o, .ow {

15 background-color: #fefa01;

16 color: #fefa01;

17 }

18

19 /* Whitespace Styles */

20 .w {

21 background-color: #fff;

22 color: #fff;

23 }

24

25

26 /* Names/Identifiers Styles */

27 .n, .na, .nb, .nc, .no, .nd, .ni, .ne, .nf, .nl, .nn, .nt, .nv {

28 background-color: #01ffff;

29 color: #01ffff;

30 }

31

1https://pygments.org/docs/tokens/, accessed: 2024-03-02

69

https://pygments.org/docs/tokens/

32 /* Literals Styles */

33 .m, .mb, .mf, .mh, .mi, .mo, .s, .sa, .sb, .sc, .dl, .sd, .s2, .se,

.sh, .si, .sx, .sr, .s1, .ss, .b, .bp, .f, .fm, .v, .vc, .vg,

.vi, .vm, .i, .il {

↪→

↪→

34 background-color: #01ffff;

35 color: #01ffff;

36 }

37

38 /* Error Styles */

39 .err {

40 background-color: #fff;

41 color: #fff;

42 }

43

44 /* Generics Styles */

45 .g, .gd, .ge, .ges, .gr, .gh, .gi, .go, .gp, .gs, .gu, .gt {

46 background-color: #fefa01;

47 color: #fefa01;

48 }

70 Towards Model - Visual Encoding Colors

	Introduction
	Background and Related Work
	Code Readability
	Conventional Calculation Approaches
	Deep Learning Based Approaches
	Data Augmentation
	Diverse Perspectives
	Data Generation
	Abstract Syntax Tree
	Stratified Sampling

	Mined and Modified Code for Dataset Generation
	Work on Existing Datasets
	Classification Considerations
	Dataset Generation Approach
	REDEC: Readability Decreaser
	Construction of Questionnaires
	Readability Classification Model

	Evaluation
	Research Questions
	Pilot Survey
	Experimental setup
	Threats to Validity
	Results

	Prolific Survey
	Experimental setup
	Threats to Validity
	Results

	Model Training
	Experimental Setup
	Results

	Discussion
	Conclusions and Future Work
	Pilot Survey Feedback
	REDEC Configuration File
	Prolific Survey Texts
	Towards Model - Visual Encoding Colors

