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Abstract

The possibility to learn cryptography algorithms with easily under-
standable and freely available tools makes more people encounter this
topic. The open-source program JCrypTool provides the opportunity to
do so, as it has the task to provide cryptography for everybody. In the
JCrypTool there are already many cryptography algorithms, from classic
algorithms as the Caesar code to the modern standards of symmetric and
asymmetric cryptography with DES and RSA. As Redactable Signature
Schemes (RSSs) might be an interesting field in the future of cryptogra-
phy, JCrypTool should also provide RSS-based algorithms. RSSs allow
removing fields without invalidating the signature. The main task of this
bachelor thesis is to implement some variants of those algorithms into the
JCrypTool. The result is an evaluated, working and publicly available
implementation and visualization of Redactable Signature Schemes in the
JCrypTool which supports the variants DPSS15, Generic Construction
and SBZ02-MERSAProd.

Keywords— Redactable Signature Schemes (RSS), JCrypTool, DPSS15, Generic
Construction, SBZ02-MERSAProd
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1 Introduction

Assume we sign a message with a traditional signature scheme. We then get an at-
tested message. If any part of the message changes, the signature will become invalid
[1]. This is an important property of signature schemes. However, in certain cases it
may be necessary to remove parts of a signed message without invalidating the sig-
nature. Thereby, the remaining message should still verify and retain certain security
properties [2]. This is what Redactable Signature Schemes (RSSs) are doing.

Currently, a standardization of RSSs algorithms is created [3, 4]. To do so, ex-
amples for the different RSS algorithms need to be calculated and implementations
need to be created. The contribution of this work is to help in that process. This is
done by (partly) implementing three different RSS algorithms. More about the three
algorithms can be found in the sections 6.2, 6.3 and 6.4. As RSSs need to be available
for everyone, it is another task of this work, to implement RSS algorithms not only in
backend code but also in the visualization JCrypTool to make it publicly available for
everyone. The third task of this thesis is the documentation of the work and eventually
the creation of remarks to the ISO23264-2 document which is the ISO document for
Redactable Signature Schemes [4].

To fulfill all tasks, this work is structured as follows. First, all used terms are
defined in section 2. Then I consider related work in section 3. In section 4 the
theoretical background for RSS algorithms is explained in detail. Thereby also use
cases (section 4.1), security properties (section 4.5), and different variants of RSS
algorithms (section 4.6) are explained. In section 5 I describe the JCrypTool and the
RSS visualization. I do not only explain the structure and possible interactions but
also distinguish what existed before my work and what I added or changed. In section
6 all about the backend implementation is explained. Thereby, for each algorithm
variant, I start with explaining the theoretical pseudocode, and then I show how I
converted it into Java code. After this, I also explain implementation details (section
6.5) which are the same for all RSS algorithms. The implementation section is followed
by some remarks to the ISO23264-2 document [4] and the evaluation of my own code
in section 7. The bachelor thesis finishes with section 8, where I summarize, the results
of my work, what is still to do and what can be concluded from this work.

2 Terms and definitions

For Redactable Signature Schemes there are some terms that need to be defined. In
this section, you find an overview of important terms used in this document. The
following definitions are direct citations from the referenced original document.

admissible changes description of all possible modifications of a message attested
with a redactable attestation scheme that can be applied within the redaction
process without invalidating the resulting redacted attestation [3]. 4–7, 9, 10, 12,
17, 18, 33, 40, 42

attestation see signature. 10, 11, 17

attestation key secret data item specific to an attestor and usable only by this entity
in the redactable attestation process [3]. 5, 6, 10, 12, 17, 43

attested message set of data items consisting of the redactable attestation, the ad-
missible changes and the fields of the message which are attested [3]. 4–6, 10,
17, 26, 55
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attestor entity using its attestation key to perform the redactable attestation process,
producing an attested message [3]. 4, 6, 8–10, 18

data integrity property that data has not been altered or destroyed in an unautho-
rized manner [5]. 5

digital attestation data appended to, or a cryptographic transformation of, a mes-
sage that allows a recipient of the data to verify the source and data integrity of
the message [3]. 5, 6

domain set of entities operating under a single security policy [6]. 5

domain parameters data item which is common to and known by or accessible to
all entities within the domain [6]. 5–7, 9, 17, 58

DPSS15 an RSS (see section 6.2). 5, 7, 19, 61

field sub-string of any length of the message [3]. 1, 4–8, 10, 17, 18

GLRSS DPSS15 for lists. 19, 22, 23, 62

GSRSS DPSS15 for sets. 19, 22, 30, 62

key generation process for generating cryptographic keys message [3]. 8–10, 42, 43

message string of octets of any length [6, 7]. 4–11, 17, 18, 20, 22, 31, 55, 57

message part see field. 8, 11, 12, 20, 22, 24–28, 32, 33, 40–42, 55, 61, 62

modification instruction instruction that describes the message redaction, i.e. how
a message is to be redacted by the redactor within a redaction [3]. 6, 10, 17, 18,
55, 60

private attestation key see attestation key. 5, 17

private key see private signature key. 6, 8, 17, 25, 27, 44, 55

private signature key data item specific to an entity and usable only by this entity
in the signature generation process [7]. 5

public key data item which is mathematically related to a private signature key and
is known by or accessible to all entity and which is used by the verifier in the
signature verification process [7]. 5, 7, 12, 25, 27, 31, 55

public verification key see public key. 10, 12

redact see redaction process [3]. 9, 11, 12, 22, 40, 54

redactable attestation data resulting from the redactable attestation process that
is appended to a message that allows a recipient of this data to verify the source
and integrity of the message [3]. 4, 5, 7, 10, 57

redactable attestation process process which takes as inputs the message, the pri-
vate attestation key, the admissible changes and the domain parameters, and
which outputs a redactable attestation [3]. 4, 5, 8, 9, 17, 18

redactable attestation scheme set of processes that achieves digital attestation
and supports the creation and verification of redactable attestations together
with a redaction process [3]. 4, 6
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redactable signature scheme see redactable attestation scheme. 1, 4, 6–8, 11, 61,
63, 64

redacted admissible changes admissible changes that are the output of the redac-
tion process [3]. 6, 10, 17, 18

redacted attestation attestation resulting from applying the redaction process at
least once with some modification instructions [3]. 4, 6, 10, 17, 18, 26, 30, 57

redacted attested message set of data items resulting from the redaction process
which consists of the redacted attestation, the redacted admissible changes and
the redacted message composed from those fields that have not been subject to
any redaction [3]. 6, 10, 17, 26, 28

redacted message message that is the output from the redaction process [3]. 6, 9,
10, 17, 18, 22, 26, 28, 30

redaction removal of a field such that it results in the irreversible and permanent
removal of information contained within that field from the message [3]. 5,
7–10, 15, 17, 18

redaction key set of public data elements which is related to an attestor’s attestation
key and which is used by the redactor in the redaction process [3]. 6, 8, 10, 12,
17, 43

redaction process process which takes as inputs the attested message, the domain
parameters, the redaction key and the modification instructions, and which out-
puts a redacted attested message by applying the given modification instructions
[3]. 4–6, 8, 9, 17, 18

redactor entity that carries out the redaction process. 5, 6, 8, 9, 18

RSS Redactable Signature Scheme. 1, 4, 5, 7, 8, 11, 17, 18, 21, 26, 30, 54, 61, 63, 64

RSS algorithm see redactable attestation scheme. 4, 7, 9, 18, 20, 32, 57, 61

sign see signature generation process. 4, 6, 8–11, 14, 42, 54, 55

signature pair of an octet string and an integer for providing authentication, gener-
ated in the signature generation process [7]. 1, 4, 6–12, 22, 24, 30, 40

signature algorithm see signature scheme. 7, 10

signature generation process process which takes as inputs the message, the sig-
nature key and the domain parameters, and which gives as output the signature
message [7]. 5, 6

signature scheme set of processes that achieves digital attestation [3]. 4, 6, 8, 9, 11,
18, 22, 33, 42, 55, 61, 63

signature verification process process, which takes as its input the signed mes-
sage, the verification key and the domain parameters, and which gives as its
output the recovered message if valid [7]. 5, 7–9

signed message set of data items consisting of the signature, the part of the message
which cannot be recovered from the signature, and an optional text field [7]. 4,
6–8, 10, 22, 26–28, 30, 32, 61

signer entity using its private key to perform the sign, producing an attested message
[7]. 7, 8, 33
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verification see verification. 7, 9, 10, 16

verification key see public key. 6–8, 17, 18, 43

verification process process which:

• takes as input the attested (potentially redacted) message, consisting of
the (potentially redacted) message, the (potentially redacted) admissible
changes and the (potentially redacted) redactable attestation, the verifica-
tion key and the domain parameters

• checks whether the given attestation is a valid attestation for the given
message under the given verification key

• gives as output the result of the attestation verification: valid or invalid

[3]. 18

verifier entity that performs the verify [3]. 5, 8, 9

verify see signature verification process. 4, 7–12, 38, 42, 51, 52, 54

XML-RSS DPSS15 for XML. 61

3 Related work

The ISO23264 [3, 4] paper is still in work while this thesis is written. Before that
standard, there was none for RSS algorithms. Most of the known papers until this point
deal about theoretical constructions and about pseudocode for Redactable Signature
Schemes [8, 9, 10, 11, 12].

There is also one paper by Wolfgang Popp which deals about implementing a
backend provider in Java [13]. This implementation is for one specific scheme, the
DPSS15. My work continues this work by implementing other schemes to the existing
backend provider. However, to the best of the author’s knowledge, there is no scientific
paper which deals about implementing the schemes Generic Construction and SBZ02-
MERSAProd from Steinfeld et al. [8] into Java.

For the second part of the work, which is adding Redactable Signature Schemes to
the JCrypTool, there is, to the best of the author’s knowledge, no scientific paper about
this. There is an incomplete implementation by Leon Sell which has been finished and
extended by my work.

In summary, one can say that there is no similar work to this one yet. Due to that,
this work is scientific significant.

4 RSS algorithms

Most of today’s signature algorithms do not have the possibility to edit the signed
message. When doing so, the signature does not match the message anymore. To
overcome these restrictions, one can use Redactable Signature Schemes (RSSs). Those
differ from other asymmetric signature algorithms because parts of the signed message,
named fields, can be redacted after signing. The process of redaction is to remove one
or multiple fields of the signed message for which this operation is admissible. In
this process, the signature of the original signer is not invalidated and therewith the
message can still be verified successfully after redacting [14, 10].
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Redacting is a public operation. It can be performed by anyone who has the
redaction key together with the message and the signature. This redaction key is
public. In most schemes, the verification key and the redaction key, are the same.
More details about redacting can be found in section 4.2 [14].

Redactable Signature Schemes work with fields. Instead of having a single message,
the message is separated into multiple message parts, called fields. A field can be
removed completely or not at all. There are variants, where fields, which are made
with the same private key, can be merged. With other variants the signer can specify
which fields are redactable and which cannot be removed. Some schemes determine
the order of the message parts, while the order of other schemes can be changed freely
[14]. More properties of RSSs are explained in section 4.5.

All other modifications, which are not specified by the variant, invalidate the sig-
nature [4].

4.1 Use cases

In general, Redactable Signature Schemes are more complex than other signature
schemes. The time complexity is also not better than with other schemes [15]. It does
not bring any advantages when using Redactable Signature Schemes in every case, but
there are specific use cases where RSSs bring benefits or are irreplaceable.

A first conceivable scenario is when the signed message often changes. Resigning
every time would produce more overhead or would need more time effort than using
a Redactable Signature Scheme. Therewith, the use of RSSs is preferable [14].

Another scenario is when the signer is not reachable anymore (for example in case
of death). With a regular scheme, either the whole data can be published or nothing
at all. Especially when there is private information in the data, it cannot be released.
However, if an RSS was used while signing, the data, which should not be published,
can be removed. After this redaction step, the rest of the data can be released [14].

A third example is the Internet-of-Things. Consider any smart device, as for
example, a Smart Meter. When the data is evaluated later, the user’s privacy should
be preserved. Resigning and retransmitting every time when fields need to be removed,
would dramatically increase the communication cost. When using an RSS, the Smart
Meter can set which statistical relevant data should not be removable and which other
private information should be redactable. This way, the data needs to be transmitted
only once [15].

4.2 Parties and processes of RSS algorithms

Asymmetric signature schemes, as RSA, consist of two parties. One is the attestor
or signer, who signs the message to confirm the origin in the redactable attestation
process. The other one is the verifier, who validates the signature in the signature
verification process. He confirms or declines the signature of the signed message. On
confirmation, the verifier also knows that the original message was not modified by
someone else [3]. The associated algorithms are called sign and verify. To generate
a signature, an asymmetric key pair is needed. It is created in another step which is
called key generation [3].

RSSs add another party and another process to not redactable signature schemes,
the redaction process. The party is the redactor, and the corresponding algorithm is
called redaction. Together with the parties of asymmetric signature schemes, there are
the following parties for RSSs in total:
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1. Attestor: Signing the message to confirm the origin

2. Redactor: Make admissible changes to the signed message

3. Verifier: Confirm or decline the origin of the possibly redacted message

Together with the algorithms/processes of asymmetric signature schemes there are
the following algorithms/processes:

1. Key generation

2. Sign/Redactable attestation process

3. Redact/Redaction process

4. Verify/Signature verification process

These four steps and in which order they are performed is visualized in figure 1.
First, the key generation algorithm must be performed. Next, the sign algorithm is
executed. After that, verify and redact can be both performed multiple times and in
any order [4].

Figure 1: The steps of RSS algorithms

To generate a signature for a message, the key generation as well as the sign step
are performed once. Both steps are private operations. The processes of redaction and
verification can be done by the same or different redactors/verifiers. Those operations
are public and can therewith be done by anyone [4].

4.3 Tasks of the parties

In the following subsections, the tasks as well as the algorithm inputs and outputs are
explained for each step. A general model, which can be applied to all RSS algorithms,
is explained here. In the sections 6.2, 6.3 and 6.4 this general model gets specialized
for each scheme.

A set of domain parameters Z is part of each algorithm step. Z contains algorithm
specific parameters which must be the same for all algorithm steps. You can read
more about this in section 6.5.5.
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In the step of key generation, the attestor generates a key. As input, the algorithm
KeyGen takes a security parameter λ. This security parameter specifies the length of
the public verification key.

The output is a key which consists of a private attestation key ak, a public verifica-
tion key vk and an also public redaction key rk. In many cases, vk = rk holds [4, 10].

With sign, the attestor creates a signature (or attestation) for a message m. As
input, the algorithm Sign takes:

• an attestation key ak

• a message m consisting of n parts m1, ...,mn

• a set of admissible changes adm

The algorithm then calculates and returns the attested message which consists of the
message m, the redactable attestation att and the admissible changes adm [3, 10].

The step of redaction removes multiple fields (zero or more) of the message and
may therefore also change the signature. As input the algorithm Redact takes:

• a redaction key rk

• a message m consisting of n parts m1, ...,mn

• a redactable attestation att

• admissible changes adm

• modification instructions mod

The algorithm then redacts the message and returns a redacted attested message which
consists of a redacted message m′, a redacted attestation att′ and redacted admissible
changes adm′ [3, 10].

The verification step verifies or declines a signed message. As input, the algorithm
Verify takes:

• a public verification key vk

• a possibly redacted message m composed of n parts m1, ...,mn

• a possibly redacted attestation att

• possibly redacted admissible changes adm

The algorithm then tries to verify the attestation att for the message m. In case the
(possibly redacted) attestation att is valid, true is returned. Otherwise, the output is
false [3, 10]. An overview of all four algorithms with their in- and outputs is visualized
in figure 2.

4.4 Java model for RSSs

As the documentation of Java defines what methods a signature algorithm must sup-
port [16], the theoretical scheme from 4.2 must be adjusted.

There are two classes per algorithm for each of the four algorithms. One class
extends the abstract class KeyPairGeneratorSpi, and its purpose is only key gener-
ation. The other class extends the abstract class RedactableSingatureSpi [13]. This
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Figure 2: Overview of processes in a Redactable Signature Scheme [3]

class handles sign, redact and verify. It is inspired by the abstract class SignatureSpi
which is implemented by not redactable signature schemes in Java [17].

Each operation sign, redact, and verify is separated into multiple methods. This
makes sense for different reasons. One reason is that those steps can be seen as
individual operations as well. For example, adding one message part is an individual
operation. Another reason is that later methods can be called multiple times, for
example, to generate multiple signatures. Moreover, this makes the structure and the
parameters simpler. The last reason for this is that the same is done in the Java
documentation [16] for not redactable signatures.

The operations for an RSS are found in the classes KeyPairGeneratorSpi and
RedactableSingatureSpi. Each method has the name prefix ”engine-”. For example, the
first step of sign in the RedactableSingatureSpi class has the name engineInitSign(...).

Besides KeyPairGeneratorSpi and RedactableSingatureSpi, there are also the classes
KeyPairGenerator and RedactableSingature (implemented by Wolfgang Popp [13]).
Those have two main functionalities. The first one is to delegate method calls to the
right instance of the corresponding ”-Spi” class and to the corresponding ”engine-”
method. The second one is to keep track of the current state of the backend. The
methods for each algorithm need to be called in a predefined order. The state saves
which method has been called last. Therewith, it can be made sure that the order of
the method calls is valid.

Before going into detail about the actual algorithm signatures, there are also some
data transfer classes that must be explained:

The Identifier (implemented by Wolfgang Popp [13]) consists of a ByteArray
bytes and an int position. The class ByteArray is a wrapper class for the primitive
Java type byte[] and contains message parts. Therewith the Identifier class contains
for a message part also its position (see also figure 3).

The SignatureOutput (implemented by Wolfgang Popp [13]) matches the at-
testation att. In addition to the attestation, the SignatureOutput also contains the
message parts m1, ...,mn. This is no problem, as the message is public and can there-
fore be available for anyone, who obtains the attestation att (see also figure 3).
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The KeyPair contains a PrivateKey and a PublicKey. The PrivateKey matches
the attestation key ak. The PublicKey matches the public verification key ck as well
as the redaction key rk. An overview of the different classes can be found in figure 3.

As all prerequisites are explained now, we can have a detailed look at the method
signatures and functionality of the algorithms KeyGen, Sign, Redact, and Verify.

The algorithm KeyGen is located in the class extending KeyPairGeneratorSpi
and has the method signature KeyPair generateKeyPair(). The abstract class Key-
PairGeneratorSpi also specifies the method void initialize(int keySize, SecureRandom
random). The keySize is the equivalent to our λ. The SecureRandom is for random
number generation and is not further specified [18].

The algorithm Sign is located in the class extending RedactableSingatureSpi and
is separated into

1. void engineInitSign(KeyPair keyPair)

2. Identifier engineAddPart(byte[] part, boolean isRedactable)

3. SignatureOutput engineSign()

Calling engineInitSign(KeyPair keyPair) is the first step in order to create a new
signature. Next, the engineAddPart(byte[] part, boolean isRedactable) method can
be called multiple times. On each call, a message part and whether it should be
redactable or not is saved. The composition of the isRedactable information over all
added message parts is equivalent to the admissible changes adm. To get the signature,
engineSign() must be called in the last step (see figure 4).

The algorithm Redact is separated into

1. void engineInitRedact(PublicKey publicKey)

2. void engineAddIdentifier(Identifier identifier)

3. SignatureOutput engineRedact(SignatureOutput signature)

Calling engineInitRedact(PublicKey publicKey) is the first step to redact the sig-
nature. Next, the engineAddIdentifier(Identifier identifier) method can be called mul-
tiple times. On each call, an Identifier for a message part to redact is saved. To redact
the saved Identifier from the original SignatureOutput, engineRedact(SignatureOutput
signature) must be called in the last step (see figure 5).

The algorithm Verify is separated into

1. void engineInitVerify(PublicKey publicKey)

2. boolean engineVerify(SignatureOutput signature)

Both methods are called once. To verify a signature, the first step is to call
engineInitVerify(PublicKey publicKey). In this step, the public key for the verification
is set. Then engineVerify(SignatureOutput signature) is called to verify the given
signature (see figure 6).
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Figure 3: Class diagram for classes KeyPairGeneratorSpi, RedactableSinga-
tureSpi, KeyPair, PublicKey, PrivateKey, SignatureOutput, SecureRandom,
Identifier, and ByteArray
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Figure 4: Sequence diagram of the sign step. In this visualization, the rssCon-
troller uses the backend code consisting of a redactableSiganture and a redacta-
bleSignatureSpi. In the process, an identifier and a signatureOutput is created.
Each object is thereby an instance of its corresponding class or an instance of
any implementation of its corresponding interface.
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Figure 5: Sequence diagram of the redaction step. In this visualization, the
rssController uses the backend code consisting of a redactableSiganture and a
redactableSignatureSpi. In the process, a new signatureOutput is created. Each
object is thereby an instance of its corresponding class or an instance of any
implementation of the corresponding interface.
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Figure 6: Sequence diagram of the verification step. In this visualization, the
rssController uses the backend code consisting of a redactableSiganture and a
redactableSignatureSpi. Each object is thereby an instance of its corresponding
class or an instance of any implementation of the corresponding interface.
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4.5 Security model and properties

For the security of an RSS there must be correctness (1), unforgeability (2) and privacy
(3) guaranteed [3, 10]. Besides those required cryptographic properties, there are also
optional ones [4, 3]. Those are:

• (Un-)detectability of redactions (4, 5)

• Unlinkability of redactions (6)

• Disclosure control (7)

• Consecutive redaction control (8)

• Mergeability (9)

There are slightly different definitions for those properties in different papers [1,
10] but as they were standardized in the ISO23264-1 document [3], I will use those
definitions. The following definitions are direct citations from the referenced original
document.

Definition 1 (Correctness) The verification of attested messages correctly gener-
ated by the redactable attestation process shall succeed, i.e. giving an output ”valid”,
with overwhelming probability, assuming the verification key used corresponds to the
attestation key used for the attestation.

Similarly, the verification of redacted attested messages correctly generated by the
redaction process shall succeed, i.e. giving an output ”valid”, with overwhelming prob-
ability, assuming the redaction and verification keys used correspond to the used attes-
tation key [3].

Definition 2 (Unforgeability) An entity not having access to the private attesta-
tion key ak corresponding to a verification key vk, but with access to the redaction key
rk, shall only be able to produce a valid set (m*, att*, adm*) of message, attestation,
and admissible changes for this vk, if (m*, att*, adm*) can be derived from an output
(m, att, adm) of the redactable attestation process on input ak, followed by none or
more subsequent applications of the redaction process using modification instructions
mod that are in accordance with the admissible changes adm [3].

Definition 3 (Privacy) Given a redacted attestation att’, a redacted message m’,
a redaction key rk, and redacted admissible changes adm’, output by the redaction
process, as well as a verification key vk and domain parameters Z, it shall be compu-
tationally infeasible to recover any information about the message m* used as input in
said redaction process beyond what is revealed by m’ [3].

Definition 4 (Undetectability of redactions) The outputs of the redactable at-
testation process and of the redaction processes shall be computationally indistinguish-
able [3].

Definition 5 (Detectability of redactions) Any entity not requiring access to any
private keys is able to identify whether or not any field (or fields) of the message has
(have) been redacted, and identify the positions in the document where the redaction has
been performed. Detectability of redactions is the opposite property to undetectability
of redactions [3].
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Definition 6 (Unlinkability of redactions) No entity shall be able to decide whether
two outputs (m*, att*, adm*) and (m**, att**, adm**) with m*=m** and adm*=adm**
but att* 6= att** the redaction or the redactable attestation processes for the same ver-
ification key vk were derived from the same or different inputs [3].

Definition 7 (Disclosure control) The attestor is enabled to define the admissible
changes adm in a way that one or more fields mi cannot be redacted in the redaction
process [3].

Definition 8 (Consecutive redaction control) The attestor is enabled to allow
the redactor to remove fields from the attestor-defined admissible changes adm. If
the property is given, a redactor can choose during the redaction process to leave a
potentially redactable field mi in the message m, and only remove the capability of
that field being subsequently redactable, i.e. removing the field mi from the admissible
changes results in redacted admissible changes. After this redaction, a consecutive
redactor can no longer redact the field mi [3].

Definition 9 (Mergeability) Let (m*, att*, adm*) and (m**, att**, adm**) be
redacted messages, redacted attestations, and redacted admissible changes:

• for which the verification process with the same verification key vk outputs valid;
and

• which were both generated from the same input (m, att, adm) by applying (po-
tentially more than one) redaction process(es) with potentially different modifi-
cation instructions.

Then, any entity knowing (m*, att*, adm*) and (m**, att**, adm**) is able to derive
a triple (m***, att***, adm***), where m*** contains all fields contained in m* and
m**, for which the verification process with the verification key vk outputs valid [3].

With signature schemes and especially RSSs, the property transparency is often
one of the most important properties as well [19, 20, 21]. This property is avoided in
this work as well as in the ISO standard because of potential ambiguities. Instead,
this property is called detectability of redactions (see definition 5). You can read more
about the ambiguities of the term transparency in the document Sanitizable Signatures
in XML Signature — Performance, Mixing Properties, and Revisiting the Property of
Transparency from Henrich C. Pöhls et al. [22].

4.6 Variants of RSS algorithms

There are different variants of RSS algorithms. I will put my focus on the most common
ones. The ISO23264-2 document specifies the following [4]:

• Generic Construction [8]

• SBZ02-MERSAProd [8]

• BBDFFMOPPS10 [9]

• DPSS15 [10]

• MHI06 [11]

• MIMSYTI05 [12]
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Generic Construction X X X X
SBZ02-MERSAProd X X X X X
BBDFFKMOPPS10 X X X X
DPSS15 X X X X X
MHI06 X X X X X X
MIMSYTI05 X X X X

Table 1: Security properties of all algorithms in the ISO23264-2 document [4]

As they all work differently in detail, they also differ in properties and running
time. You can see an overview of all properties for the mentioned algorithms in table
1.

For the DPSS15 scheme, there is already a backend code in the WPProvider. The
WPProvider is written by Wolfgang Popp [13]. It supports the creation of signatures
for XML as well as for text. Both subvariants, DPSS15 for lists (GLRSS) and DPSS15
for sets (GSRSS), are supported. For JCrypTool there is a visualization of GLRSS
which was created by Leon Sell. GLRSS is also the scheme used in the ISO23264-2
document in section “9. Scheme DPSS15” because in this document the data structure
is specified as a list [3].

The task of this bachelor thesis is to implement more variants into the JCrypTool.
First, the GSRSS scheme must be added to the JCrypTool. Then I decided to also
add the Generic Construction as well as the SBZ02-MERSAProd scheme. The reason
I chose the three is that they differ in their properties (see table 1) and therefore have
different use cases.

5 JCrypTool

JCrypTool is an open-source software based on the Eclipse rich client platform. The
software enables to experiment with cryptographic algorithms and therewith to learn
cryptography visually [23].

The JCrypTool is separated into two parts: JCrypTool Core and JCrypTool
Crypto. The core part takes care of runtime, editors and providers of cryptography
algorithms as well as about the main views. The crypto part is all about the cryp-
tography plugins, ranging from algorithms and analyzes to games and visualizations
[23].

19



5.1 Structure of the RSS plugin

The visualization from Leon Sell for the JCrypTool (see figure 7) is structured as
follows: On top, there is a short general description of what RSS algorithms are.
There is also a question mark button from which one can get to a more detailed
description of RSS algorithms. A three columned layout follows this top section.

The first column has the name overview with a box for each step of the algorithm.
Each step also represents a state of the visualization. The visualization highlights the
past and the current steps. This gives the user an overview about what steps were
already performed, what the current step is, and which steps will follow. The steps
are:

1. Set Key Pair

2. New Message

3. Sign Message

4. Verify Message

5. Redact Message

6. Verify Redacted

They are similar to the general steps of RSS algorithms (see figure 1). Other than
in the general version, the order of the Redact and the Verify step is fixed. First the
original message is verified (= Verify Message) and then the steps Redact (= Redact
Message) and Verify (= Verify Redacted) are performed alternately. Between KeyGen
(= Set Key Pair) and Sign (= Sign Message) there is also the step New Message. In
this step, the user can define the content of the message parts to sign.

Next to those steps there are three more boxes: Key Material, Signed Message
and Redacted Message. Those belong to the overview column as well. In each of
those boxes, one can press two buttons. The magnifying glass button is for inspecting
the respective part. The reset button resets the visualization to the state before the
respective part was set.

The second column is the user interaction column. The content of this column
depends on the current state of the visualization. In general, there are buttons, se-
lection boxes, text fields, and check boxes for interaction with the user. You can find
more about the content specific operations in section 5.2.

The third and last column is called about. This column contains a description of
the current step of the visualization. It describes what the step is about and explains
possible operations.

Leon Sell created the three columned layout with its content. Part of my work
were changes of the user interaction column and the about column. I also added the
top description part with the question mark button as this structure is identical to
most other plugins of the JCrypTool.
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Figure 7: Initial state of the RSS visualization in the JCrypTool
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5.2 User interaction column

As already mentioned, the content of the user interaction column depends on the
current state. For each step, I will first describe, what has been there when I started
to work on the tool, and then I will explain what I added. Everything else has been
created by Leon Sell.

In the Set Key Pair step (see figure 8) the user has the possibility to select a
key size and to generate a new key pair with the selected key size (possible options
are 512, 1024, and 2048). I added the possibility to choose the algorithm variant
(GLRSS, GSRSS, Generic Construction, or SBZ02-MERSAProd), to choose the hash
algorithm (SHA-256 or SHA-512) as well as buttons for im-/exporting the key pair.
Depending on the currently selected algorithm variant, more options can be chosen.
For GLRSS and GSRSS an accumulator can be chosen. For Generic Construction an
underlying signature scheme can be selected and for SBZ02-MERSAProd the number
of exponents to generate can be specified. I added the selection boxes depending on
the currently selected scheme to the visualization.

In the New Message step (see figure 9) one can add message parts as well as
their content. The user can also add more message parts. Here I added the possibility
to import a signed message and I added the button to remove the last message part.

In the third step, Sign Message, (see figure 10) the user can choose for each
message part whether it should be redactable or not. This can be done by selecting
the corresponding checkboxes. Afterwards, the user can create the signature for the
message. I added a special case for the schemes where all parts must be redactable.
In this case, all parts are set to redactable and one cannot change this. I also added
the possibility to im-/export the signed message.

After signing, one can see, whether the signed message is valid or not for the current
key in the Verify Message step (see figure 11). When signing a message instead of
importing one, the output will always be a valid signature. Therewith, only the valid
case has been implemented. However, when importing a message, which is signed by
another key, the signature of the signed message will be invalid. I added this case to
the tool to make it consistent. Whatever the validation results in is shown in this step
now. In case the signature is invalid, it is not possible to continue. Instead, the user
needs to reset the signed message or both key and signed message. This is possible
with the reset buttons of the overview. Below the validating part, I added an export
button for the signed message.

In the Redact Message step (see figure 12) the user can choose which parts
to redact. The checkbox to tick a message for redaction is only activated when it
is allowed to redact this message part. This way, only message parts for which this
operation is allowed can be redacted. After selecting the parts to redact, the user can
confirm the selection to create the redacted message from the current one. I did not
change this step.

In the Verify Redacted step (see figure 13) one can see again whether the redacted
message is valid or not. Here I added the possibility to export the redacted message.
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Figure 8: The user interaction column of the Set Key Pair step. In this exam-
ple, a key pair of the size 512 is going to be generated for the GLRSS algorithm
variant with the SHA-256 hash algorithm. For GLRSS there is also the possi-
bility to choose an accumulator. Here, the Baric Pfizman Accumulator (BPA)
is selected.
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Figure 9: The user interaction column of the New Message step. The user
decided to enter the message parts “This is” as message part one and “a test
message.” as message part two.

Figure 10: The user interaction column of the Sign Message step. The user
decided that both message parts should be redactable, and therefore he checked
the boxes for both message parts. A signature is going to be created.
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Figure 11: The user interaction column of the Verify Message step. The val-
idation with the public key is successful, as the message parts are signed with
the corresponding private key.

Figure 12: The user interaction column of the Redact Message step. The user
decided to remove the message part “a test message.” and, because of that, he
checked the box next to this message part. It is going to be redacted.
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Figure 13: The user interaction column of the Verify Redacted step. The
redacted message contains the part “This is” but not the part “a test mes-
sage.” anymore. As the redacted attested message was created from a valid
attested message by a valid redaction, it also validates successfully.

Besides those steps there are also changes in the three options Key Material,
Signed Message and Redacted Message (see figures 14, 15, and 16). Originally,
one could inspect the corresponding data when pressing the magnifying glass button.
The user has also the option to return to the previous step. Beside this inspecting,
the corresponding data can now also be exported.

5.3 Logical changes

There are also some changes, which were made to the RSS plugin, that are not visible.
I did that changes in the controller class RssAlgorithmController.

One big change is as follows: Originally, when redacting message parts, the redacted
message parts have been saved in a collection in the controller. Then when redacting
multiple times, all saved redacted parts have been redacted from the original signed
message. Because of that, there has been a deviation between frontend and back-
end which could be resolved with the saved collection. Although this seems counter-
intuitive, it has been working fine. At least as long as it has not been tried to export
the current possibly redacted attestation. With this feature implemented, one does not
get the expected exported file anymore after multiple redactions. Instead, only the
last redaction was performed on the exported file.

As this makes no sense for the user, another solution was needed. I therefore
changed the logic to the following. After signing/importing, the original signed mes-
sage is saved twice. Once as the originalSignature and once as the currentSignature.
When redacting, the currentSignature is always updated with the new signed message

26



Figure 14: The user interaction column of the inspect Key Material option.
The key type, key length, private key, and public key are displayed.

Figure 15: The user interaction column of the inspect signed message option.
Both original message parts “This is” and “a test message.” as well as the
information that both are redactable, are displayed.
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Figure 16: The user interaction column of the inspect redacted message option.
Only the not redacted message part “This is” of the redacted message together
with the information that it is redactable, are displayed.

which is returned in this step. The redaction is performed on the currentSignature,
other than before. With this logic the currentSignature is as expected when exporting
it. The user can also still return to the originalSignature when pressing the back but-
ton of the redacted message box. Besides the advantage that the export of the redacted
attested message is now working, this variant seems to be more intuitive as well.

Another big change is that I added methods for importing and exporting. Those
are:

• void saveKey(String path)

• KeyInformation loadKey(String path)

• void saveOriginalSignature(String path)

• void saveCurrentSignature(String path)

• boolean loadSignature(String path)

The method saveKey(String path) saves the key to the given path. The path
is the absolute path on the computer, including the filename.

The method loadKey(String path) loads the key from a given path, sets the
current key settings to the loaded ones, and returns them. The KeyInformation object
therefore consists of the algorithm name, the key size as well as the key pair itself.

The methods saveOriginalSignature(String path) and saveCurrentSigna-
ture(String path) save the original/current signed message to the given path.

The method loadSignature(String path) loads the signed message from the
path, sets the original and the current signed message to the loaded one, and then
returns whether the loading was successful or not.

In each method call, the main task of saving or loading something is delegated to
a persistence class. Besides that, in all methods errors may occur. In table 2 you can
see all possible error scenarios and their handling.

In the Persistence.java file, one can find an interface Persistence. It defines the
four load and save methods:
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Error Exception Error Handling
Given path is null or
empty String

IllegalArgumentException Should only occur
with programming
error

Current state is
wrong

IllegalStateException Should only occur
with programming
error

Path invalid FileNotFoundException User dialogue pops
up

Key type unknown or
not supported

NoSuchAlgorithmException User dialogue pops
up

Key data invalid InvalidKeyException User dialogue pops
up

Signature data in-
valid

InvalidSignatureException User dialogue pops
up

Signature data does
not match used key

InvalidSignatureException User dialogue pops
up

Table 2: Possible errors, their exceptions and their handling during saving and
loading

• void saveInformation(KeyInformation keyInformation, String path)

• KeyInformation loadInformation(String path)

• void saveSignatureOutput(SignatureOutput signOut, String path)

• SignatureOutput loadSignatureOutput(String path)

Both methods, saveOriginalSignature(String path) and saveCurrentSignature(String
path) use the more general saveSignatureOutput(SignatureOutput signOut, String path)
method.
The XMLPersistence class implements this interface. It saves and loads the KeyIn-
formation and the SignatureOutput to/from a XML file at the given path. Therefore,
XStream with its default (un-)marshalling is used. This default method uses reflec-
tion to access all fields of the object to save/load (in our case a KeyInformation or a
SignatureOutput object). When saving, an XML tag is created for each field, and the
value of the field gets stored with it. By loading the same thing happens the other
way around: Each XML tag is read, and the corresponding attribute of the object is
set to the read value. After creating the object and setting the attributes, the object
is cast to the needed return type. Then it is returned to the method caller.

In case the parsed object is no instance of the needed return type, an exception is
thrown. In the case of loading a signature, an InvalidSignatureException and in case
of a KeyInformation an InvalidKeySpecException is thrown. Other exceptions might
also happen. For all possible exceptions and their handling, see table 2.

5.4 Visual changes

There are also graphical user interface changes.
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I added the top section with the short general description and the question mark
button for getting further information. I did this because other visualization plugins for
the JCrypTool do also have this section. Besides the purpose to give the RSS plugin
a similar layout and design, this section gives a short summary, what the plugin is
about.

With this top section integrated, the plugin did not resize correctly anymore. For
solving this, the resizing got replaced with the same scrolling logic as from other
plugins. In case the plugin UI is now bigger than the screen of the user, a scrollbar to
the right of the plugin shows up. It enables vertical scrolling.

When integrating more algorithm variants (such as the GSRSS, the Generic Con-
struction, and the SBZ02-MERSAProd scheme), it is also necessary to add a selection
box to choose the algorithm variant to use. I added this selection box in the first step,
Set Key Pair, to the user interaction column.

Other changes I did to the plugin are button changes. To the ’next’ and ’back’
buttons, an image was added to make the plugin more intuitive. I also added the
buttons for importing and exporting. They are used for the key im-/export as well as
for the possibly redacted attestation im-/export.

Other GUI changes are the indication of not validating (see figure 17) as well as
the dialogue box (see figure 18), for example when selecting a signature which does
not fit the previous selected key. For more details, see section 5.3.

In the JCrypTool, there is an online help with further explanations. It can be
accessed by the help section of the visualization. Those explanations got added in
cooperation with Henrich Poehls. The explanations of the visualization itself got also
revised to fit the new functionalities.

Leon Sell made his version of the visualization plugin abstract in almost every
part. This made it possible that the code worked for all algorithm variants. At some
few points, the algorithm variant specific output scheme was accessed directly.

One of those was when inspecting the signed message or the redacted message.
There it was tried to get the accumulator proofs for the individual parts. This part
of the plugin did not work. I decided to remove this code as it was algorithm specific.
Instead, I replaced it with a similar view as in the Verify Message and Verify Redacted
step.

Another part is when inspecting the Key Material. As each key pair is built up
different, it is necessary for the frontend code to differ between the variants. For ex-
ample, if the key pair is for the SBZ02-MERSAProd algorithm, one needs to visualize
multiple exponent pairs in the frontend. This needs to be done different as when
working with key pairs with a single exponent pair. The frontend code for this works
as follows: The concrete instance of the SignatureOutput object is determined. De-
pending on the signature a different human-readable output is created and then given
to the interaction column of the visualization.

6 Implementation

After talking about the JCrypTool and the changes of the RSS visualization, in the fol-
lowing subsections I will write about changes and new implementations in the backend
code.
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Figure 17: The Verify Message step with a message which does not validate. A
typical example for this scenario is when a wrong public key is used. All possible
reasons, why the verification is not successful, are listed below the result.

Figure 18: An error dialogue box. It appears, for example, when the user tries
to load a signature that does not match the currently selected key/algorithm
variant.
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6.1 Changes of abstract classes and interfaces

I changed the abstract classes RedactableSignature, RedactableSignatureSpi and the
interface SignatureOutput where necessary. Changes in those classes are changes for
all implementations of RSS algorithms. This means changes in the code should not be
made frivolously but with care.

When I changed the logic of the frontend code as described in 5.4 it was necessary
to also change the backend code. More precisely, it was necessary to extend the
interface SignatureOutput. Previously it was not possible to get all message parts of a
SignatureOutput object but this is needed now.

I added the method getMessageIdentifiers(). This method returns a collection
(for example, a list or a set) of all Identifiers which are part of the signature. Each
Identifier contains the message part itself as ByteArray as well as the position of it.
This position might also be −1 to indicate no valid position is possible (for example,
in case of a set). The position value might also be necessary to determine the message
part unambiguously. An example for this is when having multiple message parts with
the same content in a scheme. Because of that a ByteArray as return type is not
sufficient.

As every signature scheme has a class implementing the SignatureOutput interface,
this method also needs to be implemented in the code of every scheme. As this is not
too complicated, I will not go further into detail about the individual schemes.

Currently, all implementations of SignatureOutput have different encodings for
their attributes. This is fine, but there should be a method for all implementations
which returns a unified version. See for comparison the methods getEncoded() and
getFormat() of the Key class [24].

6.2 DPSS15

The DPSS15 scheme, as described in [4], is based on an accumulator and witnesses.
An accumulator is a system which calculates a hash value for given message parts
as well as so-called witnesses. With a witness and the accumulator value, one can
prove the membership of a message part. The redacting with this system is based on
removing all witnesses of the message parts as well as the message part itself [14].

There are performance issues for the KeyGen algorithms for DPSS15. Those algo-
rithms get very slow with growing key size. Because of that, the generation of a key
with a size of 2048 takes already a few seconds and a key with a size of 4096 is not
supported, as it takes too long. In the (near) future, the key size 4096 will probably
get even more important [25]. Due to that, the parts of the algorithm, which lead to
such long computation times, need to be replaced with more efficient versions.

Since the DPSS15 scheme was already implemented by Wolfgang Popp in the
WPProvider [13] and I made no significant changes to it, I will not go further into
detail about this scheme.

6.3 Generic Construction

The Generic Construction scheme is based on a Merkle tree as well as on hash values
of random tags. For redacting, one replaces the message part to be redacted by a
hash value calculated from the signed message. When signing or verifying, a Merkle
tree is generated. The Merkle tree is generated in a way that no matter whether one
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or multiple message parts were redacted, the leaf nodes contain the same hashes and
therewith if the signature is valid, the root node evaluates to the same value as without
redaction [14].

As the Generic Construction does not fulfill the property Disclosure control (see
table 1), the signer cannot specify which message parts are redactable and which
are not. Instead, all parts are redactable. The ISO23264-2 document says that the
admissible changes adm are therefore set to contain all field indices: adm = 1, ..., n [4].
However, since the information is unnecessary, it can also be left away in this case.

The Generic Construction scheme uses a collision-resistant hash-function hash-
Method as well as an asymmetric signature scheme signatureScheme. For example,
SHA3 can be used as hashMethod. For the signatureScheme RSA can be used.

In the following subsections, key components of the Generic Construction scheme
and the steps are explained more in detail. Beside the translated steps of the pseu-
docode, there is also additional Java code added. The part at the beginning of the
code of the algorithms Sign and Redact is for deep cloning (see also section 6.5.4).

In the steps Sign and Redact the output is set together as a GCSignatureOutput,
after all algorithm steps have been performed. The GCSignatureOutput implements
the SignatureOutput from section 4.4.

6.3.1 Merkle tree

The Generic Construction scheme requires a Merkle tree. I did not implement it
on my own, as there are already some Java implementations for this freely avail-
able. Instead, I used the implementation of Simone Stefani from https://github.

com/SimoneStefani/merkle-tree-Java (accessed 2021-06-21). I adjusted this code
to make it easy to use for the Generic Construction scheme.

6.3.2 KeyGen

The key of the Generic Construction scheme is the same as for the signatureScheme.
The exact key, which needs to be generated, depends on the underlying signatureScheme.
Independent of which exact scheme is used, no separate KeyGen algorithm must be
specified. For this scheme ak = vk holds [4].

6.3.3 Sign

Section “6.2.2 Redactable attestation process” of the ISO23264-2 document specifies
the Sign algorithm. The input and the output of the algorithm are defined in section
4.4. Figure 19 shows the corresponding pseudocode. I converted each step into Java
code. The final result can be seen in listing 1.

Listing 1: The Generic Construction Sign algorithm as Java code.

/**

* Implementation of the algorithm described in "6.2.2 Redactable

* attestation process" of ISO23262-2. The message parts are

previously set
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Figure 19: The Generic Construction Sign algorithm as specified in “6.2.2
Redactable attestation process” of ISO23264-2 [4]

* by <code>addPart()</code>. {@inheritDoc}

*

* @return A GCSignatureOutput with it’s contents (see

* <code>GCSignatureOutput</code>).

*/

protected SignatureOutput engineSign() {

// Create deep copy of message parts

List<ByteArray> messageParts = new ArrayList<>();

try {

for (ByteArray part : this.messageParts) {

messageParts.add((ByteArray) part.clone());

}

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

// Step a: Generate a merkle tree

MerkleTree merkleTree;

// Step b: Choose random tags (and prepare for hashing)

BigInteger tagMsg;

BigInteger tag;

List<ByteArray> tags = new ArrayList<>();

tagMsg = generateRandomTag();

byte[] tagMsgByteArray = toByteArray(tagMsg);

List<HashMaker> hashMakers = new ArrayList<>();

for (ByteArray messagePart : messageParts) {
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do {

tag = generateRandomTag();

} while (tag.equals(BigInteger.ZERO)); // No tag should be 0

tags.add(new ByteArray(toByteArray(tag)));

HashMaker hashMaker =

new HashMaker(tagMsg, messagePart, tag, hashMethod);

hashMakers.add(hashMaker);

}

// Step c: Calculate hashes

List<byte[]> hashes = calculateHashes(hashMakers);

// Step d: Initialize the merkle tree

merkleTree = new MerkleTree(hashes, hashMethod);

// Step e: Calculate the Merkle tree’s root hash

byte[] rootHash = merkleTree.getRoot().getHash().getValue();

// Step f: Sign the (rootHash||tagMsg||n) with the digital

signature

// scheme, where n is the number of message parts

byte[] n = toByteArray(BigInteger.valueOf(messageParts.size()));

ByteArray concatenation =

new ByteArray(rootHash).concat(tagMsgByteArray).concat(n);

byte[] signature = null;

try {

signatureScheme.update(concatenation.getArray());

signature = signatureScheme.sign();

} catch (SignatureException e) {

e.printStackTrace();

}

// Calculate the output

GCSignatureOutput output =

new GCSignatureOutput(messageParts,

new ByteArray(signature),

new ByteArray(n),

new ByteArray(tagMsgByteArray),

tags);

this.messageParts = new ArrayList<>();

return output;

}

35



6.3.4 Redact

Section “6.2.3 Redaction process” of the ISO23264-2 document specifies the Redact
algorithm [4]. The input and the output of the algorithm are defined in section 4.4.
Figure 20 shows the corresponding pseudocode. I converted each step into Java code.
The final result can be seen in listing 2.

Figure 20: The Generic Construction Redact algorithm as specified in “6.2.3
Redaction process” of ISO23264-2 [4]

Listing 2: The Generic Construction Redact algorithm as Java code.

/**

* Implementation of the algorithm described in "6.2.3 Redaction

process" of

* ISO23262-2. The message parts to redact are previously set by

calling

* <code>addIdentifier()</code>.

* {@inheritDoc}

*

* @param signatureOutput The signature output to redact.

* @return Whether the signature is valid or not.

*/

protected SignatureOutput engineRedact(SignatureOutput

signatureOutput)

throws RedactableSignatureException {

// Cast signature

GCSignatureOutput gcSignatureOutput =

signatureOutputToGCSinatureOutput(signatureOutput);

// Extract deep copies of parts

List<ByteArray> messageParts = new ArrayList<>();

List<ByteArray> tags = new ArrayList<>();

ByteArray signature = null;

ByteArray n = null;

ByteArray tagMsg = null;

try {
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signature = (ByteArray)

gcSignatureOutput.getSignature().clone();

n = (ByteArray) gcSignatureOutput.getN().clone();

tagMsg = (ByteArray) gcSignatureOutput.getTagMsg().clone();

for (ByteArray part : gcSignatureOutput.getMessageParts()) {

messageParts.add((ByteArray) part.clone());

}

for (ByteArray tag : gcSignatureOutput.getTags()) {

tags.add((ByteArray) tag.clone());

}

} catch (CloneNotSupportedException e) {

throw new RedactableSignatureException("There was an error

with "

+ "cloning: " + e.getMessage());

}

// Step a: Verify. It is assumed that the input is valid.

// Step b: Already done by creating deep copies

// Step c: For all j contained in the message parts to redact do

for (int j = 0; j < messagePartsToRedact.size(); j++) {

/*

* The position of the message part in the original arrays

* extracted from the identifier j.

*/

int i = messagePartsToRedact.get(j).getPosition();

// 1: Compute the hash value

HashMaker hashMaker =

new HashMaker(toBigInt(tagMsg.getArray()),

messageParts.get(i),

toBigInt(tags.get(i).getArray()),

hashMethod);

byte[] hash = hashMaker.getHash();

// 2: Replace the content of the message part with the hash

value

messageParts.set(i, new ByteArray(hash));

// 3: Replace the tag with 0.

tags.set(i, new ByteArray(ZERO_BYTE.clone()));

}

GCSignatureOutput output =

new GCSignatureOutput(messageParts,

signature,

n,

tagMsg,

37



tags);

this.messagePartsToRedact = new ArrayList<>();

return output;

}

6.3.5 Verify

Section “6.2.4 Verification process” of the ISO23264-2 document specifies the verify
algorithm. The input and the output of the algorithm are defined in section 4.4.
Figure 21 shows the corresponding pseudocode. I converted each step into Java code.
The final result can be seen in listing 3.

Figure 21: The Generic Construction Verify algorithm as specified in “6.2.4
Verification process” of ISO23264-2 [4]

Listing 3: The Generic Construction verify algorithm as Java code.

/**

* Implementation of the algorithm described in "6.2.4 Verification

process"

* of ISO23262-2. {@inheritDoc}

*

* @param signatureOutput The signature output to verify.

* @return Whether the signature is valid or not.

*/

protected boolean engineVerify(SignatureOutput signatureOutput)

throws RedactableSignatureException {

// Cast signature

GCSignatureOutput gcSignatureOutput =

signatureOutputToGCSinatureOutput(signatureOutput);
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// Extract parts

List<ByteArray> messageParts =

gcSignatureOutput.getMessageParts();

ByteArray signature = gcSignatureOutput.getSignature();

ByteArray n = gcSignatureOutput.getN();

ByteArray tagMsg = gcSignatureOutput.getTagMsg();

List<ByteArray> tags = gcSignatureOutput.getTags();

// Step a: Generate a merkle tree

MerkleTree merkleTree;

// Step b: Calculate the hash values if the tag isn’t 0.

List<HashMaker> hashMakers = new ArrayList<>();

// Calculate hash values

for (int i = 0, tagsSize = tags.size(); i < tagsSize; i++) {

HashMaker hashMaker;

ByteArray tag = tags.get(i);

// Transform values

BigInteger tagAsBigInt = toBigInt(tag.getArray());

BigInteger tagMsgAsBitInt =

toBigInt(tagMsg.getArray());

// Check if tag is not 0

if (!tagAsBigInt.equals(BigInteger.ZERO)) {

hashMaker = new HashMaker(tagMsgAsBitInt,

messageParts.get(i),

tagAsBigInt, hashMethod);

} else { // tag is 0

hashMaker = new HashMaker(messageParts.get(i).getArray());

}

hashMakers.add(hashMaker);

}

// Extract hash values

List<byte[]> hashes = new ArrayList<>();

for (HashMaker hashMaker : hashMakers) {

hashes.add(hashMaker.getHash());

}

// Step c: Initialize the merkle tree

merkleTree = new MerkleTree(hashes, hashMethod);

// Step d: Calculate the root hash value of the merkle tree

byte[] rootHash = merkleTree.getRoot().getHash().getValue();

/*

* Step e: Use the used signature scheme and the concatenation

* (rootHash||tagMsg||n) to determine whether the signature is
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valid

* or not.

*/

ByteArray concatenation =

new ByteArray(rootHash).concat(tagMsg).concat(n);

boolean isValid = false;

try {

signatureScheme.update(concatenation.getArray());

isValid = signatureScheme.verify(signature.getArray());

} catch (SignatureException e) {

e.printStackTrace();

}

return isValid;

}

6.4 SBZ02-MERSAProd

The SBZ02-MERSAProd algorithm has, other than DPSS15 and Generic Construc-
tion, two sets for the admissible changes: One set with admissible changes for redaction
and another one for message parts which are not redactable. The algorithm relies on
computing the signatures of hash values of the message parts and uses Fiat’s multi-
exponent batch RSA algorithm to compute the product of signatures. One can redact
by dividing by signature values corresponding to the message parts to be redacted [14].

6.4.1 Structure

The pseudocode uses the set of IdentifiersX. Depending on the step, there are multiple
values calculated for each Identifier in X. Over all four steps those values are:

• m: The message part

• c: The Chinese reminder theorem value

• h: The hash value

• s: The secret exponent

• e: The public exponent

One option to implement this in Java is to use sets as well. One set for the identifiers,
one set for all key-value pairs of an Identifier, and one of the named values. With
such an implementation, one would need to iterate over a set and compare the current
Identifier with the Identifier of the key-value pair to find the value which belongs to
it. This is unpractical, inefficient, and the code gets confusing.

When looking for a better solution, I came up with different possibilities: The
first one is to transform all sets except the set of Identifiers into arrays. This way,
when the values for the i-th Identifier are needed, one can access the i-th value of
the array very quickly (for example c[i]). A disadvantage of this option is that this is
not object-oriented, while Java is an object-oriented programming language. Another
disadvantage is that there is much more memory allocated as actually needed. Let n
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be the number of message parts before redacting. Then each value is n times allocated,
even if only one of them might be used.

A second option is to use hash maps. For each value, a hash set is created. As
key, the Identifier is used. Then only as much memory as needed gets allocated. Also,
the access to the requested value keeps simple (for example, c.get(i)). However, this
is still not object-oriented. The values belonging together are stored in separate data
structures.

The third option is using a class I called MersaPart. The class diagram for it can
be seen in figure 22. One MersaPart object contains all values. It can be created from
a message part and its position or from an Identifier object. All values are accessible
by getter and setter methods. They are stored in the object with the Identifier they
belong to after calculation and are received by the Identifier they belong to when
requested. Since for each Identifier a MersaObject is created, overall a set of these
objects is used. Instead of iterating over all values in X, one can then iterate over
the MersaPart set instead. This option is object-oriented because all values belonging
together are stored together in one object. The values can also be simply requested
(for example mersaPart.getC()). A disadvantage compared to the other two options
is that the value for the i-th Identifier cannot be requested without iterating over all
mersaParts.

Figure 22: The class MersaPart which contains all values belonging to one
Identifier

I decided to use the third option with the MersaPart object. The reason for this
is that when only adding the values which correspond to the Identifiers in X from
the pseudocode, one iterates over the whole mersaParts anyway. It is not necessary
to request the i-th Identifier at any point, as long as one can access all corresponding
values for one Identifier. This way, the only disadvantage of the third option is not
relevant.

6.4.2 Chinese remainder theorem

The SBZ02-MERSAProd scheme needs a Java implementation of the Chinese remain-
der theorem. As there are already implementations freely available on the internet,
I used the code which can be found on the site https://rosettacode.org/wiki/

Chinese_remainder_theorem#Java (accessed 2021-06-21). However, this code does
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not support integers which are bigger than 231 − 1 = 2147483647, as the Java primi-
tive data type int is used. While this is sufficient for most applications, with signature
schemes this value is exceeded. I adjusted the code by replacing the primitive data
type int with the Java BigInteger class to resolve this issue. Due to that, the primitive
calculation operators were replaced with the corresponding methods of BigInteger as
well.

6.4.3 Sets for admissible changes

For the SBZ02-MERSAProd scheme, it is not further specified how the admissible
changes adm are generated from the sets admred and admfix. I decided to implement
adm as a BitSet [26]. This class stores multiple boolean values and can be easily
converted from and to a byte[] (see valueOf(byte[] bytes) and toByteArray()). In
my implementation, if a boolean value is true, the corresponding message part is
redactable. Each boolean value corresponds to the position of a message part. For
example, when the third message part (m3) should be redactable (m3 ∈ adm), the
boolean value at position two (as the positions are zero-indexed) must be true. As there
are also methods to set and get boolean values at specific positions, the pseudocode
with sets is equivalent to a single BitSet instance.

6.4.4 KeyGen

Section “7.2.1 Key generation process” of the ISO23264-2 document specifies the Key-
Gen algorithm [4]. The SBZ02MERSAProd scheme requires a special key, as a private
and a corresponding public exponent can only be used to sign/verify one message part.
Due to that, multiple exponent pairs need to be generated. The pseudocode for the
generation of a key pair, which fulfills this property, is shown in figure 23.

Figure 23: The SBZ02-MERSAProd KeyGen algorithm as specified in “7.2.1
Key generation process” of ISO23264-2 [4]

The basis for this algorithm is an RSA key generation algorithm. It is extended
in such a way that for one calculated modulo N , multiple public exponents are cho-
sen. Those public exponents can be any odd prime numbers. For efficiency, it is
recommended to use the first l ones, where l is the maximal number of message parts
supported by this key pair. Then for each public exponent, a private exponent is
calculated in the same way as with RSA key generation [4, 8].
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The verification key vk is the same as the redaction key rk and consists of N as
well as a list of all chosen public exponents. The attestation key has additionally a list
with all private exponents [4, 8].

I converted the pseudocode into Java code. To align my implementation with an
existing Java implementation for RSA key generation, I used existing code from the
OpenJDK 11 RSAKeyPairGenerator [27]. You can see the final result in listing 4.

Listing 4: The SBZ02-MERSAPRod KeyGen algorithm as Java code.

/**

* Generates a new KeyPair with a MersaPublicKey and a

MersaPrivateKey.

* Therefore uses the keySize, the SecureRandom and the

numberOfExponents as

* specified on initialisation. The algorithm for generating such a

KeyPair

* is based on RSA. However instead of generating one private and

one public

* exponent, multiple exponent pairs are generated for the same

modulo n.

* Instead of using F4 = 65537 as the public exponent, the first

* numberOfExponents odd prime numbers are used. They KeyPair can

then be

* only used with a maximum of numberOfExponents message parts or

less.

*

* @return A new KeyPair with a MersaPublicKey and a MersaPrivateKey.

*/

@Override

public KeyPair generateKeyPair() {

List<BigInteger> privateExponents = new ArrayList<>();

List<BigInteger> publicExponents = new ArrayList<>();

int lp = this.keySize + 1 >> 1;

int sq = this.keySize - lp;

if (this.random == null) {

this.random = JCAUtil.getSecureRandom();

}

BigInteger p;

BigInteger q;

BigInteger n;

BigInteger p1;

BigInteger q1;

BigInteger phi;

p = BigInteger.probablePrime(lp, this.random);

// Create a modulo n out of two prime numbers with a minimum
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length

// of keySize.

do {

q = BigInteger.probablePrime(sq, this.random);

if (p.compareTo(q) < 0) {

p1 = p;

p = q;

q = p1;

}

n = p.multiply(q);

} while (n.bitLength() < this.keySize);

// Calculate phi.

p1 = p.subtract(BigInteger.ONE);

q1 = q.subtract(BigInteger.ONE);

phi = p1.multiply(q1);

BigInteger publicExponent;

BigInteger privateExponent;

// Start with first possible prime number for the public

exponent.

publicExponent = BigInteger.valueOf(3);

// Generate a exponent pair and add it to the list.

for (int i = 0; i < numberOfExponents; i++) {

// Find a public exponent.

do {

publicExponent = publicExponent.nextProbablePrime();

} while (!publicExponent.gcd(phi).equals(BigInteger.ONE));

// Calculate the private exponent for the public one.

privateExponent = publicExponent.modInverse(phi);

publicExponents.add(publicExponent);

privateExponents.add(privateExponent);

}

// Create the KeyPair with modulo n, the private and the public

// exponents.

PublicKey publicKey = new MersaPublicKey(n, publicExponents);

PrivateKey

privateKey =

new MersaPrivateKey(n, publicExponents, privateExponents);

return new KeyPair(publicKey, privateKey);

}

Note that the implementation differs here from the pseudocode because the private
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key holds both, the private and the public exponents. However, this does not affect
the security, as the public exponents are public anyway. The reason for adding the
public exponents to the private key as well is because the Java implementation does
the same for an RSA key [28].

6.4.5 Sign

Section “7.2.2 Redactable attestation process” of the ISO23264-2 document specifies
the Sign algorithm. The input and the output of the algorithm are defined in section
4.4. Figure 24 shows the corresponding pseudocode. I converted each step into Java
code. The final result can be seen in listing 5.

Figure 24: The SBZ02-MERSAProd Sign algorithm as specified in “7.2.2
Redactable attestation process” of ISO23264-2 [4]

Listing 5: The SBZ02-MERSAProd Sign algorithm as Java code.

/**

* Implementation of the algorithm described in "7.2.2 Redactable

* attestation process" of ISO23262-2. The message parts are

previously set

* by <code>addPart()</code>. {@inheritDoc}

*

* @return A MersaSignatureOutput with it’s contents (see

* <code>MersaSignatureOutput</code>).

* @throws MersaException In case the used key isn’t valid.

*/

protected SignatureOutput engineSign() throws MersaException {

// A set of identifiers for the message parts.

Set<MersaObject> mersaObjects = new HashSet<>();

int n = messagePartsMap.size();

// Bitmask for admissible changes

BitSet adm = new BitSet(n);

// Create list of available identifiers with index number from 0

to l-1

45



int l = messagePartsMap.size();

List<Integer> availableIdentifiers = new ArrayList<>();

for (int i = 0; i <= l - 1; i++) {

availableIdentifiers.add(i);

}

Iterator<Map.Entry<ByteArray, Boolean>> mapIterator =

messagePartsMap.entrySet().iterator();

ByteArray messagePart = null;

Boolean isRedactable;

Random random = new Random();

int randomIdentifier;

int randomIndexFromList;

MersaObject identifier;

/*

* Convert the messagePartsMap to the mersaObjects and the sets

* admFix and admRed.

*/

while (mapIterator.hasNext()) {

// Get the key (=messagePart) value (=isRedactable) pairs

Map.Entry<ByteArray, Boolean> entry = mapIterator.next();

try {

messagePart = (ByteArray) entry.getKey().clone();

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

isRedactable = entry.getValue();

// Get a random index from the list of available ones

randomIdentifier =

random.nextInt(availableIdentifiers.size());

randomIndexFromList =

availableIdentifiers.get(randomIdentifier);

availableIdentifiers.remove(randomIdentifier);

/*

* Create the identifier together with the unique random index

* ranging from 0 to l-1.

*/

identifier = getMersaObject(messagePart, randomIndexFromList);

mersaObjects.add(identifier);

// Depending on redactable or not add to the corresponding

set.

adm.set(identifier.getK(), isRedactable);

mapIterator.remove(); // avoids a

ConcurrentModificationException.
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}

// Convert adm to byteArray

ByteArray admAsByteArray = new ByteArray(adm.toByteArray());

// Check if the key has enough exponents

if (privateKey.getNumberOfExponents() < mersaObjects.size()) {

throw new MersaException("The given key does not support

enough "

+ "message parts.");

}

// Step a: Generate a random bit string

BigInteger tagCes = generateRandomTag();

// Cast tagMsg to ByteArray

ByteArray tagCesAsByteArray = new ByteArray(toByteArray(tagCes));

// Step b: Calculate hashes

HashMaker hashMaker;

BigInteger hashValue;

for (MersaObject object : mersaObjects) {

hashMaker =

new HashMaker(admAsByteArray, tagCesAsByteArray, n,

object.getK(),

object.getMk(), hashMethod);

hashValue = hashMaker.getHashAsBigInteger();

object.setHk(hashValue);

}

// Step c: Not needed as already done by HashMaker

// Step d: Sign

List<BigInteger> secretExponents =

privateKey.getSecretExponents();

BigInteger signature;

BigInteger secretExponent;

BigInteger moduloN = privateKey.getN();

for (MersaObject object : mersaObjects) {

BigInteger hash = object.getHk();

secretExponent = secretExponents.get(object.getK());

signature = hash.modPow(secretExponent, moduloN);

object.setSk(signature);

}

// Step e: Use Fiat’s multi-exponent batch RSA

BigInteger sigma = BigInteger.valueOf(1);

for (MersaObject object : mersaObjects) {

sigma = sigma.multiply(object.getSk()).mod(moduloN);

}
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// Create signature output

HashSet<Identifier> identifierSet =

(HashSet<Identifier>) mersaObjects.stream()

.map(MersaObject::toIdentifier)

.collect(Collectors.toSet());

MersaSignatureOutput output =

new MersaSignatureOutput(identifierSet, sigma, n,

tagCesAsByteArray, admAsByteArray);

// Reset message parts map

messagePartsMap = new HashMap<>();

return output;

}

6.4.6 Redact

Section “7.2.3 Redaction process” of the ISO23264-2 document specifies the Redact
algorithm [4]. The input and the output of the algorithm are defined in section 4.4.
Figure 25 shows the corresponding pseudocode. I converted each step into Java code.
The final result can be seen in listing 6.

Figure 25: The SBZ02-MERSAProd Redact algorithm as specified in “7.2.3
Redaction process” of ISO23264-2 [4]

Listing 6: The SBZ02-MERSAProd Redact algorithm as Java code.

/**

* Implementation of the algorithm described in "7.2.3 Redaction

process" of

* ISO23262-2. The message parts to redact are previously set by

calling
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* <code>addIdentifier()</code>.

* This scheme currently only supports redacting the original

signature,

* but not to redact an already redacted again.

* {@inheritDoc}

*

* @param signatureOutput The signature output to redact.

* @return Whether the signature is valid or not.

*/

protected SignatureOutput engineRedact(SignatureOutput

signatureOutput)

throws RedactableSignatureException {

// Cast signatureOutput to mersaSignatureOutput

MersaSignatureOutput mersaSignatureOutput =

signatureOutputToMersaSinatureOutput(signatureOutput);

// A bitmask for admissible changes

BitSet adm =

BitSet.valueOf(mersaSignatureOutput.getAdm().getArray());

ByteArray admAsByteArray = mersaSignatureOutput.getAdm();

// Extract data from mersaSignatureOutput

boolean isRedactable;

Set<MersaObject> allMersaObjects = new HashSet<>();

MersaObject newMersaObject;

for (Identifier messagePart :

mersaSignatureOutput.getMessageParts()) {

// Get deep clone of message parts

try {

newMersaObject =

new MersaObject((Identifier) messagePart.clone());

allMersaObjects.add(newMersaObject);

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

}

BigInteger tagCes =

toBigInt(mersaSignatureOutput.getTagCes().getArray());

ByteArray tagCesAsByteArray = mersaSignatureOutput.getTagCes();

BigInteger sigma = mersaSignatureOutput.getSigma();

BigInteger moduloN = publicKey.getN();

int n = mersaSignatureOutput.getN();

// Get public exponents e (= publicExponents)

List<BigInteger> publicExponents =

publicKey.getPublicExponents();

// Restore the identifier in the messagePartsToRedact
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Set<MersaObject> mersaObjectsToRedact = new HashSet<>();

for (Identifier messageToRedact : messagePartsToRedact) {

for (MersaObject messagePart : allMersaObjects) {

if (messagePart.getMk()

.equals(messageToRedact.getByteArray())) {

mersaObjectsToRedact.add(messagePart);

}

}

}

// Step a: Verify - Skipped

// Step b: Check if mod (= messagesToRedact) are valid

for (MersaObject messageToRedact : mersaObjectsToRedact) {

isRedactable = adm.get(messageToRedact.getK());

if (!isRedactable) {

throw new MersaException("Not redactable part tried to

redact"

+ ".");

}

}

// Step c: Remove from m’ (= messagePartsLeft) all

messagesToRedact

Set<MersaObject> mersaObjectsLeft = new

HashSet<>(allMersaObjects);

mersaObjectsLeft.removeAll(mersaObjectsToRedact);

// Step d: Set x as identifiers in messageParts

for (MersaObject messagePart : allMersaObjects) {

// Set ek

messagePart.setEk(publicExponents.get(messagePart.getK()));

}

// Step e: Compute ck with Chinese-Remainder-Theorem

for (MersaObject object : allMersaObjects) {

BigInteger ck = calculateCk(publicExponents, object.getK());

object.setCk(ck);

}

// Step f: Compute hashes

HashMaker hashMaker;

for (MersaObject object : allMersaObjects) {

hashMaker = new HashMaker(admAsByteArray, tagCesAsByteArray,

n,

object.getK(),

object.getMk(),

hashMethod);

BigInteger hk = hashMaker.getHashAsBigInteger();
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object.setHk(hk);

}

// Step g: Already done by hash maker

// Step h: Compute sk

BigInteger sk;

BigInteger divisor;

BigInteger hashPow;

BigInteger pow;

for (MersaObject object : mersaObjectsLeft) {

divisor = BigInteger.ONE;

for (MersaObject innerObject : allMersaObjects) {

pow = object.getCk().divide(innerObject.getEk());

hashPow = innerObject.getHk().modPow(pow, moduloN);

divisor = divisor.multiply(hashPow).mod(moduloN);

}

sk = sigma.modPow(object.getCk(), moduloN);

sk = sk.multiply(divisor.modInverse(moduloN)).mod(moduloN);

object.setSk(sk);

}

// Step i: Use Fiat’s multi-exponent batch RSA algorithm

BigInteger sigmaNew = BigInteger.ONE;

for (MersaObject object : mersaObjectsLeft) {

sigmaNew =

sigmaNew.multiply(object.getSk()).mod(moduloN);

}

// Create output

HashSet<Identifier> identifierSet =

(HashSet<Identifier>) mersaObjectsLeft.stream()

.map(MersaObject::toIdentifier)

.collect(Collectors.toSet());

MersaSignatureOutput outputNew =

new MersaSignatureOutput(identifierSet, sigmaNew, n,

tagCesAsByteArray, admAsByteArray);

// Reset message parts to redact

messagePartsToRedact = new ArrayList<>();

return outputNew;

}

6.4.7 Verify

Section “7.2.4 Verification process” of the ISO23264-2 document specifies the verify
algorithm. The input and the output of the algorithm are defined in section 4.4.
Figure 26 shows the corresponding pseudocode. I converted each step into Java code.
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The final result can be seen in listing 7.

Figure 26: The SBZ02-MERSAProd Verify algorithm as specified in “7.2.4
Verification process” of ISO23264-2 [4]

Listing 7: The SBZ02-MERSAProd verify algorithm as Java code.

/**

* Implementation of the algorithm described in "7.2.4 Verification

process"

* of ISO23262-2. {@inheritDoc}

*

* @param signatureOutput The signature output to verify.

* @return Whether the signature is valid or not.

*/

protected boolean engineVerify(SignatureOutput signatureOutput)

throws RedactableSignatureException {

// Cast signatureOutput to mersaSignatureOutput

if (!(signatureOutput instanceof MersaSignatureOutput)) {

throw new MersaException("Signature ouput not valid.");

}

MersaSignatureOutput mersaSignatureOutput =

(MersaSignatureOutput) signatureOutput;

BitSet adm =

BitSet.valueOf(mersaSignatureOutput.getAdm().getArray());

ByteArray admAsByteArray = mersaSignatureOutput.getAdm();

// Extract data from mersaSignatureOutput

Set<Identifier> messageParts = new HashSet<>();

for (Identifier messagePart :

mersaSignatureOutput.getMessageParts()) {

// Get deep clone of message parts
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try {

messageParts.add((Identifier) messagePart.clone());

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

}

BigInteger tagCes =

toBigInt(mersaSignatureOutput.getTagCes().getArray());

ByteArray tagCesAsByteArray = mersaSignatureOutput.getTagCes();

BigInteger sigma = mersaSignatureOutput.getSigma();

BigInteger moduloN = publicKey.getN();

int n = mersaSignatureOutput.getN();

// Check if the key has enough exponents

if (publicKey.getNumberOfExponents() < messageParts.size()) {

throw new MersaException("The given key does not support

enough "

+ "message parts.");

}

// Get public exponents e (= publicExponents)

List<BigInteger> publicExponents =

publicKey.getPublicExponents();

// Create MersaObjects and therewith

// Step a: Calculate x

Set<MersaObject> mersaObjects = new HashSet<>();

MersaObject newObject;

for (Identifier messagePart : messageParts) {

newObject = new MersaObject(messagePart);

// Set ek

newObject.setEk(publicExponents.get(newObject.getK()));

mersaObjects.add(newObject);

}

// Step b: Check if x is corresponding to adm

// As adm is encoded as a bit mask, therefore the corresponding

check

// to the steps b1 and b2 in the document is to verify the

bitmask.

// Therefore proceed as follows: set for each identifier

remaining

// the bit in the adm to 1. Then check, if adm contains any 0

value.

// If it does so, a not redactable part was redacted => Error

// Otherwise proceed.

for (MersaObject object : mersaObjects) {

adm.set(object.getK(), true);

}
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adm.flip(0, adm.length());

if (adm.cardinality() != 0) {

return false;

}

// Step c: Recompute the hash values

HashMaker hashMaker;

for (MersaObject object : mersaObjects) {

hashMaker = new HashMaker(admAsByteArray, tagCesAsByteArray,

n,

object.getK(), object.getMk(), hashMethod);

object.setHk(hashMaker.getHashAsBigInteger());

}

// Step d: Convert hashValues to numeric values. Already done.

// Step e: Compute e as the product of public exponents

BigInteger e = BigInteger.ONE;

for (MersaObject object : mersaObjects) {

e = e.multiply(object.getEk());

}

// Step f: Compute r

BigInteger r = BigInteger.ONE;

BigInteger exponent;

for (MersaObject object : mersaObjects) {

exponent = e.divide(object.getEk());

r = r.multiply(object.getHk().modPow(exponent,

moduloN)).mod(moduloN);

}

// Step g: Calculate and return accept/reject

BigInteger sigmaPowE = sigma.modPow(e, moduloN);

return r.equals(sigmaPowE);

}

6.4.8 Fixed bug in the redact step

There was a bug in the Java code of the SBZ02-MERSAProd scheme, which was due
to an imprecise pseudocode. As this bug took a few weeks to fix, I will describe this
process in detail in this section. First, I tried to localize the bug with the help of
automated tests.

There are various automated tests which should pass on every RSS (see section
7.2). Here the tests, which perform the redact step failed, while the tests which did
not do so, passed successfully. This is the first reason why I restricted the location of
the bug to the redaction step. Another reason is that I confirmed the calculated values
of the sign and verify of a test with the help of handmade calculations (see appendix
C) based on the formulas on the pseudocode.

The next thing I did was making a simple handmade calculation (see appendix
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D) following the steps of the pseudocode. Then I implemented the same test as an
automated one. Here I confirmed again that everything works correctly until step g).
Before this step is performed, the last intermediate results are the hash values. Those
are the same as in the sign step and also the same as in the handmade calculation. As
this is the expected result of a correct algorithm implementation, I restricted the bug
further to the last three steps g) - i).

Henrich Poehls and Stephan Krenn helped at this point with resolving the issue.
The problem was indeed in step h: The division in this step is no integer division, but
a division modN . Stephan Krenn provided another variant of the formula in this step
which made this clear: sk = Σck ∗ (

∏
i∈X h

bck/eic
i )−1modN .

By translating this formula to Java code (see listing 6) the bug could be fixed.
All automated tests are now running successfully. To confirm the results, I created
another final version of a handmade calculation (see appendix E).

6.5 Implementation details

In the following section, I will explain different general implementation details for all
algorithm variants. Those are relevant when dealing with Java code.

6.5.1 Removal of list items

At the end of the Sign step the messageParts, which were saved by calling engineAd-
dPart(byte[] part, boolean isRedactable), are removed. Therewith new message parts
can be added again and then engineSign() can be performed again with the same pri-
vate key. This can be done without calling engineInitSign(KeyPair keyPair) a second
time.

Similar applies to the Redact step. At the end of it the messagePartsToRedact,
which were saved by calling engineAddIdentifier(Identifier identifier), are removed.
Therewith new modification instructions can be added again and then engineRedact()
can be performed again with the same public key. This can be done without calling
engineInitRedact(PublicKey publicKey) a second time.

6.5.2 Skipping the verification in the redaction step

The first step in the Redact algorithm is always to verify the given attested message.
This is skipped in the Java implementation because of two reasons. The first one is
simply performance. The second and more important reason is that the Java interfaces
for signature schemes do not provide the execution of Verify while executing Redact
because the algorithms are separated into multiple methods (see section 4.4).

Instead of verifying the input in the Redact algorithm, it is assumed that the given
attested message is valid. If this is not the case, it is almost impossible that the output
of the algorithm is so. Either the algorithm throws an exception or the output is
not valid. As both cases lead to the same result that the verification fails, this is
acceptable.

6.5.3 Value representations

In Java, there are multiple options for coding messages and keys. First, there is the
representation as byte[]. Messages, which are initially Strings, can be converted to
byte[] and also keys can be encoded this way. While the byte[] format is a good option
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for representation, it is, other than the String representation, not very well readable.
Also, one cannot calculate with byte[]. Another disadvantage is that this is a primitive
type, so no own methods can be added.

For calculating, the Java BigInteger libraries are used. A BigInteger can be
converted into a byte[] and the other way around. However, there is some restriction:
The BigInteger is signed. Due to that only not negative BigIntegers are allowed in
my Java code. Converting from a byte[] to a BigInteger is simple, as there is already
a constructor for BigInteger which does this (see listing 8). The conversion from
BigInteger to byte[] requires some more code (see listing 9) and is inspired by https:

//stackoverflow.com/questions/4407779/biginteger-to-byte (accessed 2021-06-
18).

Listing 8: Method to convert a byte[] to an BigInteger.

/**

* Converts the byteArray to a BigInteger.

*

* @param byteArray The byteArray to convert.

* @return The given byteArray as BigInteger.

* @author Lukas Krodinger

*/

public static BigInteger toBigInt(byte[] byteArray) {

return new BigInteger(1, byteArray);

}

Listing 9: Method to convert a BigInteger to a byte[].

/**

* Converts the bigInteger to a byte[] and returns it. This method is

* inspired by the code on https://stackoverflow

.com/questions/4407779/biginteger-to-byte

* from "700 Software".

*

* @param bigInteger The bigInteger to convert.

* @return The bigInteger as byte[].

* @author Lukas Krodinger

*/

public static byte[] toByteArray(BigInteger bigInteger) {

if (bigInteger.equals(BigInteger.ZERO)) {

throw new IllegalArgumentException("The BigInteger must not

be 0.");

}

byte[] array = bigInteger.toByteArray();

if (array[0] == 0) {

byte[] tmp = new byte[array.length - 1];

System.arraycopy(array, 1, tmp, 0, tmp.length);

array = tmp;

}
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return array;

}

Another class that is used is the ByteArray class. Leon Sell created this class and
I extended it. It is a wrapper class for a byte[], which allows adding own operations,
such as concatenating, deep cloning, and checking whether two objects are the same
or not (equals).

Together with the human-readable representation of messages, the String, those
give us the following four classes:

• String

• byte[]

• BigInteger

• ByteArray

6.5.4 Deep cloning

Often, an RSS algorithms works on the given input and does some computations and
changes on that input. For example, the redaction step takes a redactable attestation
and calculates a redacted attestation of it.

While calculating, the input of the algorithm should not change and the output
should be a new object. However, when using the input or flat/shallow copies/clones
of it, the input object may change. This is because of the following reason:

Java does pass by value. For objects, however, there are only references to the
objects stored. The actual objects lay on the heap. When those references are passed,
a copy of the reference is created, but the reference is still referring to the same object
on the heap. If now any change is done to the new object, the original one is affected
in the same way, as both are the same object on the heap. This is not what we want,
instead we need to clone the input before changing anything [29].

There are different variants of cloning. One can divide between a flat/shallow
and a deep copy. We need to differ between those when we talk about an object
which has other objects as attributes itself. This is, for example, the case for all
SignatureOutputs. The first step for shallow as well as for deep cloning is to create a
copy of the original object. With a flat clone, we now have a new object on the heap,
but all object references inside the original and the copy point to the same objects
again, since only the references got copied. This is not sufficient for our case [30].

Instead, we want to make a deep clone. When doing so, for each attribute, which
is an object again, another deep clone is created. This way we create deep clones of
everything until we only have primitive data types. Those are then stored on the heap
directly instead of the reference to it. To make deep cloning work, all participating
classes need to support deep cloning [30].

6.5.5 WPProvider

Besides implementing a signature which extends RedactableSignatureSpi and all other
classes, which might be needed, there is another important step to make the RSS
algorithms work with the WPProvider. This step is to register the signature scheme
to the WPProvider. Therefore, one needs to add the class, which executes the scheme,
together with a name to the setup() method of the WPProvider class. The registered
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class thereby does already specify all domain parameters Z, for example, the security
parameter λ or which other algorithms to use. Because of that, there is no need to
specify and return Z in the KeyGen step any more. Instead, Z must also be passed
to this algorithm step.

For example, let us have a look at the file GCRedactableSignature.java. In there
we find the abstract class GCRedactableSignature (see listing 11). In this class it is not
yet specified, which underlying signatureScheme to use, which hashMethod to use or
what λ is. However, all the logic for those domain parameters is part of this abstract
class. The class GCwithRSAandSHA512 (see listing 10) is, for example, located in the
same file. This class extends the GCRedactableSignature class and therewith has all
not-overwritten methods of it. The first thing to notice is that there are no methods
overwritten. This means, the behavior is the same in both classes. What makes
the GCwithRSAandSHA512 class different is its constructor. It has only a single
line where the constructor of the super class (=GCRedactableSignature) is called. It
passes for the needed domain parameters signatureScheme, hashMethod and λ concrete
values. Therewith, GCwithRSAandSHA512 has all variable domain parameters defined
which are needed to perform Sign, Redact or Verify. This class can be added to the
WPProvider (other than the GCRedactableSignature class).

Listing 10: The GCwithRSAandSHA512 class implementing the GCRedacta-
bleSignature class.

/**

* Initializes the Generic Construction for signature scheme with the

* underlying algorithm SHA512withRSA and hash method SHA-512.

*

* @author Krodinger Lukas

*/

public static final class GCwithRSAandSHA512 extends

GCRedactableSignature {

public GCwithRSAandSHA512() throws NoSuchAlgorithmException {

super(Signature.getInstance("SHA512withRSA"),

MessageDigest.getInstance("SHA-512"), 512);

}

}

Listing 11: The constructor of the GCRedactableSignature class which extends
the RedactableSignatureSpi class.

abstract class GCRedactableSignature extends RedactableSignatureSpi {

/**

* Creates a new instance of the signature scheme with a given

signature

* scheme and a given hash method to use.

*

* @param signatureScheme The signature scheme to use.

* @param hashMethod The hash method to use.
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*/

GCRedactableSignature(Signature signatureScheme, MessageDigest

hashMethod

, int lambda) {

this.signatureScheme = signatureScheme;

this.hashMethod = hashMethod;

if (lambda % Byte.SIZE != 0) {

throw new IllegalArgumentException(

"Lambda must be divisible by " + Byte.SIZE + ".");

}

this.lambda = lambda;

}

}

Listing 12: The GCwithRSAandSHA512 class gets registered in the setup()
method of the WPProvider class. Additionally to the name GCwithRSAand-
SHA512 the alias GC also refers to the same scheme.

private void setup() {

put("RedactableSignature.GCwithRSAandSHA512",

"de.unipassau.wolfgangpopp.xmlrss.wpprovider.gc"

+ ".GCRedactableSignature$GCwithRSAandSHA512");
put("Alg.Alias.RedactableSignature.GC", "GCwithRSAandSHA512");

}

In the setup method of the WPProvider class, there is also the possibility to
define synonyms for already registered providers. Besides defining multiple names for
one scheme, this makes it also possible to define less specific names which refer to a
recommended concrete implementation. You can find an example for that in listing
12 [13].

The following schemes are available (“=” points to aliases):

• GSRSSwithBPAandSHA256withRSA = GSRSSwithRSAandBPA = GSRSS

• GSRSSwithBPAandSHA512withRSA

• GLRSSwithBPAandSHA256withRSA = GLRSSwithRSAandBPA = GLRSS

• GLRSSwithBPAandSHA512withRSA

• GCwithRSAandSHA256

• GCwithRSAandSHA512 = GC

• MERSAwithRSAandSHA3256andLAMBDA128

• MERSAwithRSAandSHA256

• MERSAwithRSAandSHA512

• MERSAwithRSAandSHA3512 = MERSA

• MERSAwithRSAandSHA3256

The following key pair generators are available (“=” points to aliases):

• GSRSSwithRSAandBPA = GSRSS
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• GLRSSwithRSAandBPA = GLRSS

• MERSA8

• MERSA16

• MERSA1024

In order to make SHA3 fully available, SHA3-256withRSA and SHA3-512withRSA
[31] are needed. The SHA3 based schemes should then be used instead of the SHA
based ones, SHA256withRSA and SHA512withRSA [32]. However, those schemes are
available from Java SE 9 onwards and therefore an upgrade to at least this version is
necessary to use them. Alternatively, those algorithms could be implemented or other
available implementations than the one from Java could be used.

7 Evaluation

While writing the implementations, I also evaluated the ISO23264-2 document, as I
found some small ambiguities and errors. In the following subsection, I will explain
the remarks I made due to that ambiguities and errors for the ISO23264-2 document.
After this, the evaluation of my own work follows. The implementations are evaluated
with automated tests for the backend code.

7.1 Remarks to the ISO23264-2 document

While implementing the Generic Construction and the SBZ02-MERSAProd scheme in
the backend code, I found some ambiguities in the ISO23264-2 document. Those got
discussed, and if applicable, added to the document. First, I will start with explaining
the notes for the Generic Construction scheme.

In section 6.2.2 Redactable attestation process in step b it is said that no tagi
shall only contain zeros [4]. In the same step also the tagmsg gets chosen. However,
it is nothing said about whether the tagmsg is allowed to contain only zeros or not. A
note that this is allowed, will be added to the ISO document.

In the following, I will explain the notes for the MersaProd scheme.
In section 7.2.3 Redactable attestation process it is said that there are ”two

sets containing unique index numbers corresponding to the fields” index numbers: the
first set admfix containing the indices of fields that are not admissible to redaction
and the second set admred containing indices of fields admissible to redactions” [4].
From there on, most of the time the term adm is used. Here the document does not
mention, what adm is and how it is constructed from admfix and admred. I defined
this construction myself in the section 6.4.3.

In section 7.2.3 Redaction process in step a, att = (Σ, n, tagCES) is mentioned
[4]. However, att is not defined as input for the process. To solve this issue att will be
added as input to the process in the ISO document.

In section 7.2.3 Redaction process in step b, there is the instruction to check,
if the modification instructions mod is a subset or equal to adm. However, it is not
said what to do if this is not the case. To the ISO23264-2 document therefore will be
added that the algorithm should throw an error in this case.
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In section 7.2.3 Redaction process in step h, the index variable k is used twice.
Once it is said to compute “For each k ∈ X [...]” [4] and another time the same index
variable k is used in the divisor of the computation for sk when calculating the product
over all k ∈ X [4]. On top of that, it was not clear, whether the division is modN or
not. At this point, the formula will be changed as described in section 6.4.8.

7.2 Test cases

There are test cases for all RSS algorithms implemented by Wolfgang Popp. In total,
there are ten test cases in the class AbstractRSSTest which are used for all Redactable
Signature Schemes [13]. There it is tested whether an instance of the RSS algorithm
is returned on requesting it. It is tested, whether the containsAll() method of a
SignatureOutput is implemented correctly. Also signing and then verifying the signed
message as well as signing, redacting and then verifying is tested. On top of that, the
behavior of multiple signing after a single call of engineInitSign(KeyPair keyPair) is
tested. Double redacting after a single call of engineInitRedact(PublicKey publicKey)
is tested as well [13].

There are multiple test classes for testing DPSS15 for XML (XML-RSS) as well
as for testing the DPSS15 scheme with sets and lists by Wolfgang Popp. I will not go
more into detail about those test cases, as they were not part of my work [13].

Part of my work were the test classes AbstractGCTest, GCwithRSAandSHA256Test,
and GCwithRSAandSHA512Test. The last two classes specify to use SHA3-256/SHA3-
512 as hashMethod and to use RSA as signatureScheme. Both are extending the
AbstractGCTest class and therefore on both variations the tests from this class are
executed.

The AbstractGCTest consists of tests for signing, verifying and redacting. Another
part is testing invalid signatures as well as invalid changes of message parts after
signing. Those tests partly overlap with the tests from AbstractRSSTest. However,
those tests helped me to implement the signature scheme backend correctly because
they tested my implementation for possible programming errors. Once written, tests
should not be deleted, as they still serve the purpose to detect code changes which
would break the code. Because of that, those tests will not be removed.

While GCwithRSAandSHA512Test has no additional tests and therefore just tests
another variation, GCwithRSAandSHA256Test has additional test cases. There are
two documents with handmade calculations by Stephan Krenn (see appendix A and
B). They were made to provide examples for the ISO23264-2. Both documents perform
the same steps but differ in their input message parts and therefore also in their
calculation values. In both cases SHA3-256 is used as hashMethod and the underlying
signatureScheme is not further specified. The example values are used in the code of
GCwithRSAandSHA256Test and are compared to the output of the different steps of
my implementation. In detail, those tests are performed:

1. Test of the hash calculation for three message parts

2. Test of the Merkle tree calculation

3. Partial test of the sign step
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4. Partial test of the redact step

With the SBZ02-MERSAProd scheme, there are tests for the MersaKeyPairGen-
erator and for the MersaRedactableSignature. The MersaKeyPairGeneratorTest class
tests the key generation by executing the generateKeyPair() method. Besides that, it
is tested if the key pair is valid. This is done by encrypting and decrypting a number
with an exponent pair. A pair is valid if the resulting decrypted number is the same
as before encryption. This is done for all exponents of a key pair. It is also tested if
the amount of exponents is as expected.

The test class for the MersaRedactableSignature is the
MERSAwithRSAandSHA3256andLAMBDA128 class. For this class, there is again a
handmade calculation (see appendix E) which confirms the numbers and results of the
automated tests. The main purpose of these tests was also fixing the bug, which is
described more in detail in section 6.4.8.

As all tests pass, it is confirmed that my implementation generates the same num-
bers as when executing the calculation examples by hand. This does only prove the
absence of a programming error in this specific case and does not prove my implemen-
tation in general. However, there is little change that the handmade calculation does
output the same values even once. Especially because of hashing the original message
parts, a small change in the parts would lead to a big change of the signature. This
gives me a sufficient probability that my implementation is correct in the sense that
it does the same as specified by the pseudocode in ISO23264-2.

The frontend for the JCrypTool is mainly tested by trying out different inputs by
hand. There are no automated tests, as this is not common for the JCrypTool. Often,
testing this would make little sense, as only the interaction with the backend would be
tested thereby. It is far more important that the backend code works without bugs.
Therefore, I focused on detailed testing of the backend instead of using time to also
create automated frontend tests.

8 Conclusion

This bachelor thesis has multiple tasks. First, the task of creating examples and
implementations for the schemes DPSS15 (see section 6.2), Generic Construction (see
section 6.3), and SBZ02-MERSAProd (see section 6.4) is completed, since the backend
of all three schemes is working and is verified with automated tests (see section 7.2).
Second, it is possible to interact with the three schemes in the frontend application
JCrypTool. Last, the documentation and remarks to the ISO23264-2 are part of this
paper.

However, there are still things to do which are beyond the scope of this bachelor
thesis. The other schemes of the ISO23264-2 document should be implemented in the
backend and in the JCrypTool (see section 4.6). Second, the SignatureOutput class can
be improved with a unified output version (see section 6.1). Third, the performance of
the KeyGen algorithms of the schemes GLRSS and GSRSS should be improved (see
section 6.2). Fourth, the Java version (which is currently version 8) should be updated
to a newer one (see section 6.5.5).
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In this thesis, terms and definitions for Redactable Signature Schemes are explained
(see section 2). In case a term is unclear or is defined (slightly) different in other
papers, the standardized definition from the ISO23264-1 paper can be looked up in
this section.

By stating the differences between this work and existing ones (see section 3), it
is shown that there are already started implementations and theoretical papers about
RSSs. However, none of them is completed and publicly available, like the RSS plugin
for JCrypTool.

Describing use cases (see section 4.1) illustrates the benefits of RSSs. After this
section, the reader is familiar with some examples for the use of RSSs. It is also shown
that RSSs are not only theoretical ideas but can find use in the real world.

The structure of Redactable Signature Schemes is described by explaining the
parties, processes, and tasks of RSSs (see section 4.2, 4.3). After this section, the
reader should have an idea of how RSSs work. This thesis makes clear that the
construction of RSSs can be built up starting from asymmetric cryptography.

It is shown how Java handles Redactable Signature Schemes (see section 4.4).
There are differences between how RSSs work in theory and how Java handles signature
schemes. Those gaps are closed in this section in order to make it possible to implement
RSSs in Java. It can be concluded that theoretical definitions, pseudocode algorithms
and concrete implementations in a programming language may differ.

With the summary of the security model and the properties of Redactable Sig-
nature Schemes (see section 4.5), a reader should get an overview of how variants of
Redactable Signature Schemes are different from each other. Not every RSS can be
used in every case because of different properties. Therefore, three schemes which
differ in their properties, are implemented.

By explaining the structure of the JCrypTool (see section 5.1, 5.2) the reader should
understand how the JCrypTool functions and especially how the user can interact with
the RSS visualization.

The improved and extended version of the visualization (see sections 5.3, 5.4) is now
released in the weekly build of the JCrypTool. From now on, the program containing
the plugin can be downloaded from https://www.cryptool.org/de/jct/downloads

(the concrete name of the first version is “Weekly-Build–20210730: 29.7.2021, 16:04:04”).
This thesis describes a possible conversion from pseudocode algorithms to Java

code (see section 6). Besides that it is explained how the schemes DPSS15 (see section
6.2), Generic Construction (see section 6.3), and SBZ02-MERSAPRod (see section
6.4) work in detail.

From the first subsection (see section 6.1) dealing about changes of abstract classes
and interfaces, one can conclude that sometimes a change in the abstract layer is
inevitable, although it entails a slew of changes.

There is a working implementation for DPSS15 (see section 6.2). With this section,
the reader gets an overview of the functionality of the existing implementation.

It is described in detail how the Generic Construction algorithm (see section 6.3)
works. The used Merkle tree could be implemented by hand, but it is more time
efficient to use existing implementations. The same approach is used when an im-
plementation of the Chinese remainder theorem is needed for the SBZ02-MersaProd
scheme (see section 6.4). Corresponding parts can be identified when comparing the
pseudocode and the implemented algorithms of these sections. They are described in
a different language, but do express the same calculations. For the translation, there
is a deep understanding of the algorithms necessary to choose correct data structures
and implementation details.
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There are also many differences between the pseudocode and the Java implementa-
tion. These get explained separately because the differences are similar in all backend
implementations (see section 6.5).

A possible translation of the pseudocode considering Java specific things is given
in the implementation section (see section 6). Summarizing for the implementation
section, it can be concluded that one needs to acquire knowledge in RSS and one
needs to have experience in Java programming to be able to close the gap between
pseudocode and Java.

The evaluation section (see section 7) shows ambiguities and errors of the ISO23264-
2 document (see section 7.1) and confirms that my work functions (see section 7.2).

Only pseudocode alone is not sufficient to make sure that the described algorithms
work in practice. This is shown by the remarks which are made to the ISO23264-2
document (see section 7.1). Implementing the code in an executable language such
as Java can expose mistakes not only in the implementation process, but also when
executing the Java code.

Without having automated test cases (see section 7.2), errors could also be in
the implementation. Together with handmade calculations for specific numbers, the
correctness of my implementation (at least for those specific numbers) is confirmed.
By having multiple ways of evaluation, it is possible to determine the cause of errors.

In this case, there is the pseudocode which does the same as the Java code, au-
tomated tests for the Java code and handmade calculations. As they all try to prove
each other, the margin for error becomes very small.

Overall the result of this bachelor thesis is an evaluated, working and publicly
available implementation and visualization of Redactable Signature Schemes in the
JCrypTool which supports the variants DPSS15, Generic Construction and SBZ02-
MERSAProd.
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The following provides a numerical example for the scheme specified in 6. 

 

The parameters used for the following example are as follows: 

- Any digital signature scheme as defined in ISO/IEC 14888-1 

- SHA3-256 is used as a hash function, cf. ISO/IEC 10118-3 

- The security parameter is set to lambda=128 

 

Key generation process 

The key material is generated according to the key generation process of the used digital signature 

scheme. Numerical examples for specific schemes can be found in the relevant standards, e.g., 

ISO/IEC 14888 (all parts). 

 

Redactable attestation process 

The message to be signed is as follows: 

m = (“This is “, “a test message “, “for ISO/IEC 23264-2.“) 

 

The message blocks are thus defined as follows: 

m1 = “This is ” 

m2 = “a test message ” 

m3 = “for ISO/IEC 23264-2.” 

 

Accordingly it holds that n=3 and that mod={1,2,3}. 

 

• A Merkle tree with 4 leaf nodes is generated as depicted in Figure xxx 

• The following tags are chosen: 

tagmsg  =  43fc5134 4c8486ea 22d4f142 9e70bfec 

tag1 =  94bd9fbd d15b9b96 fbe6dd50 2ec9e5fa 

tag2 =  69cd3ea8 a7124ea6 d55a5bac 71438eb4 

tag3 =  b47ddfc7 5eb2710d 6e47ed06 15cd9574 

• The hash values are computed as follows: 

h1   =  SHA3-256(tagmsg||m1||tag1) = d66fb5b9 4545f8ab 8b6c449d 324714e1 0aff7f65 8f8cb2c0 

144a6723 9b88f97a 

h2   =  74911196 8fb37ead 470be653 39346bcf eb7e5c44 8ecbc65b 93a94fe0 657f72ce 

h3   =  ef170daf 2f0bd382 1aec3df4 6d4f1a43 7bb90cd5 5e1c1cab cfdd5fb0 b00ccd62 

 

• The Merkle tree is initialized with the values above as well as h4=””. 

 

• The Merkle tree is computed as follows: 

h12 =  SHA3-256(h1||h2) = 4733147f 2129fe21 7a602ba6 ee026cc6 21cd1765 64739652 cb5d22f1 

ce0e0268 

h34 =  440ea274 1f557c8f 9b695730 c39efbe0 5ce20ab0 21efcedf 67b2a6cb 4539df49 

root =  284f7ee7 ef4d5bc9 3e1c5cad ed05b3e6 80322260 fb4c7097 52b8e224 07cf90cc 

 

• The digital signature scheme’s signature process is invoked as specified in 6.1, resulting in a 

signature Σ. 

 

The redactable attestation is given by att = (Σ,3,43fc5134 4c8486ea 22d4f142 9e70bfec,(94bd9fbd 

d15b9b96 fbe6dd50 2ec9e5fa,69cd3ea8 a7124ea6 d55a5bac 71438eb4,b47ddfc7 5eb2710d 

6e47ed06 15cd9574)). 

 

A schematic representation of the Merkle tree is given in this figure: 
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Redaction process: 

On input the domain parameters, att, the message fields m1,m2,m3, a redaction key rk, adm={1,2,3}, 

and mod=3 to indicate to redact m3 from the message. 

 

• The Merkle tree is computed in full analogy to the redactable attestation process above, and 

finally the verification process of the digital signature is invoked. 

• The message is modified to 

m’ = (“This is “, “a test message ”, ef170daf 2f0bd382 1aec3df4 6d4f1a43 7bb90cd5 5e1c1cab 

cfdd5fb0 b00ccd62) 

• Furthermore, the attestation is modified to 

att’ = (Σ,3,43fc5134 4c8486ea 22d4f142 9e70bfec,(94bd9fbd d15b9b96 fbe6dd50 

2ec9e5fa,69cd3ea8 a7124ea6 d55a5bac 71438eb4,00000000 00000000 00000000 00000000)) 

 

And the admissible changes are modified to adm’ = {1,2}. 

 

Verification process: 

On input m, att, adm, vk, and Z as output by the redaction process, the verification algorithm 

proceeds as follows: 

 

• After reconstructing n=3 from att, a Merkle tree with four leaf nodes is initialized. 

• The leaf nodes hi are computed as follows: 

◦ As tag1≠0λ and tag2≠0λ, the process computes: 

◦ asd 

h1 = SHA3-256(tagmsg||m1||tag1) = d66fb5b9 4545f8ab 8b6c449d 324714e1 0aff7f65 8f8cb2c0 

144a6723 9b88f97a 

h2 = SHA3-256(tagmsg||m2||tag2) = 74911196 8fb37ead 470be653 39346bcf eb7e5c44 8ecbc65b 

93a94fe0 657f72ce 

◦ As  tag3=0λ the process computes: 

tag3 = m3 = ef170daf 2f0bd382 1aec3df4 6d4f1a43 7bb90cd5 5e1c1cab cfdd5fb0 b00ccd62 

◦ As n=3, h4 is defined as the empty string. 

h4 = “” 
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A schematic representation of the Merkle tree is given in this figure: 

. 

 

The root of Merkle Tree is now computed in analogy to the redactable attestation process. Finally 

the verification process of the digital signature scheme is invoked on the inputs specified 6.1. 
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The following provides a numerical example for the scheme specified in 6. 

 

The parameters used for the following example are as follows: 

- Any digital signature scheme as defined in ISO/IEC 14888-1 

- SHA3-256 is used as a hash function, cf. ISO/IEC 10118-3 

- The security parameter is set to lambda=128 

 

Key generation process 

The key material is generated according to the key generation process of the used digital signature 

scheme. Numerical examples for specific schemes can be found in the relevant standards, e.g., 

ISO/IEC 14888 (all parts). 

 

Redactable attestation process 

The message to be signed is as follows: 

m = (“This is a test message “, “for ISO/IEC 23264-2 “, “provided by CyberSec4Europe”) 

 

The message blocks are thus defined as follows: 

m1 = “This is a test message ” 

m2 = “for ISO/IEC 23264-2 ” 

m3 = “provided by CyberSec4Europe” 

 

Accordingly it holds that n=3 and that mod={1,2,3}. 

 

• A Merkle tree with 4 leaf nodes is generated as depicted in Figure xxx 

• The following tags are chosen: 

tagmsg  =  363db14c 7aad2457 e978c963 1e830d23 

tag1 =  6bb7895d faa2d491 c20e836d cf04deee 

tag2 =  54474bc6 55f699a3 805907d1 9eb921f8 

tag3 =  29540484 e40eb04f fb754394 61c852d0 

• The hash values are computed as follows: 

h1   =  SHA3-256(tagmsg||m1||tag1) = f93d6665 69146568 1c4f9432 9c549e05 430b9007 6ea4507f 

699bbac0 114160bf 

h2   =  a04e0d31 b1364ca8 4ee23c1d cc570824 ae7f3620 989e5f62 5b1000f1 9d25f2f4 

h3   =  8f1aa5c8 30ddd661 ed6cf09f c84b6b8d 03daf99a 4330af45 939347b9 8f9eb696 

 

• The Merkle tree is initialized with the values above as well as h4=””. 

 

• The Merkle tree is computed as follows: 

h12 =  SHA3-256(h1||h2) = ea4022ce 9ed176b1 06ce4433 92c9f232 889a5c60 6e0bfbe7 f8534b8e 

939388d0 

h34 =  8d35d34c ff1c5916 14dfbe08 367958e8 4dbadc19 0476016f 26173956 9d03b4a4 

root =  fb72fbe0 f243b3cc 8466100f 43b8660c 53790017 65c560a5 d6fa932a d4fc28ef 

 

• The digital signature scheme’s signature process is invoked as specified in 6.1, resulting in a 

signature Σ. 

 

The redactable attestation is given by att = (Σ,3,363db14c 7aad2457 e978c963 

1e830d23,(6bb7895d faa2d491 c20e836d cf04deee, 54474bc6 55f699a3 805907d1 9eb921f8, 

29540484 e40eb04f fb754394 61c852d0)). 

 

A schematic representation of the Merkle tree is given in this figure: 
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Redaction process: 

On input the domain parameters, att, the message fields m1,m2,m3, a redaction key rk, adm={1,2,3}, 

and mod=3 to indicate to redact m3 from the message. 

 

• The Merkle tree is computed in full analogy to the redactable attestation process above, and 

finally the verification process of the digital signature is invoked. 

• The message is modified to 

m’ = (“This is a test message “, “for ISO/IEC 23264-2”, 8f1aa5c8 30ddd661 ed6cf09f c84b6b8d 

03daf99a 4330af45 939347b9 8f9eb696) 

• Furthermore, the attestation is modified to 

att’ = (Σ,3,363db14c 7aad2457 e978c963 1e830d23,(6bb7895d faa2d491 c20e836d 

cf04deee,54474bc6 55f699a3 805907d1 9eb921f8,00000000 00000000 00000000 00000000)) 

 

And the admissible changes are modified to adm’ = {1,2}. 

 

Verification process: 

On input m, att, adm, vk, and Z as output by the redaction process, the verification algorithm 

proceeds as follows: 

 

• After reconstructing n=3 from att, a Merkle tree with four leaf nodes is initialized. 

• The leaf nodes hi are computed as follows: 

◦ As tag1≠0λ and tag2≠0λ, the process computes: 

◦ asd 

h1 = SHA3-256(tagmsg||m1||tag1) = f93d6665 69146568 1c4f9432 9c549e05 430b9007 6ea4507f 

699bbac0 114160bf 

h2 = SHA3-256(tagmsg||m2||tag2) = a04e0d31 b1364ca8 4ee23c1d cc570824 ae7f3620 989e5f62 

5b1000f1 9d25f2f4 

◦ As  tag3=0λ the process computes: 

tag3 = m3 = 8f1aa5c8 30ddd661 ed6cf09f c84b6b8d 03daf99a 4330af45 939347b9 8f9eb696 
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◦ As n=3, h4 is defined as the empty string. 

h4 = “” 

 

A schematic representation of the Merkle tree is given in this figure: 

 

 
 

The root of Merkle Tree is now computed in analogy to the redactable attestation process. Finally 

the verification process of the digital signature scheme is invoked on the inputs specified 6.1. 
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The following is a calculation based on a java program as well as a hand made calculation. The 
result should be two times a successful verification, but the second one does reject. As both 
evaluations, the handmade and the java program, confirm each other, there is probably a mistake in 
my understanding of how the algorithm proceeds. With automated testing I can confirm that Key 
generation, Signing as well as Verification are (probably) working correctly. This is, why I think the 
mistake is in the redaction process part. Also, the computed hash values are identical in each step 
and therewith I conclude that the mistake is (probably) in the calculation of the s0 and s1 or the 𝛴ᇱ. 
 
The following provides a numerical example for the scheme specified in 7. 
 
The following tool was used to evaluate the calculations: 
https://defuse.ca/big-number-calculator.htm 
Also the Java-Implementation in the WPProvider confirmed those numbers. 
Note that everything is 0 instead of 1 indexed. Not 0 indexed are constants, as the message parts 
are. 
 
The parameters used for the following example are as follows: 
- SHA3-256 is used as a hash function, cf. ISO/IEC 10118-3 
- The security parameter is set to lambda=128 
 
Key generation process 
The key material is generated according to the key generation process of the used digital signature 
scheme (keySize = 256). 
 
l = 4 (> 3) 
N = 0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
e0 = 0x5 
e1 = 0x7 
e2 = 0xb 
e3 = 0x11 
d0 = 0x1e271574034d0c743825c9412354f272578f55f8d02ee707da80d349dac71e71 
d1 = 0x2b13433804b7365ce27f1f81a03035c7eaccc3f5bbb0b7c2139376fbcad3500f 
d2 = 0x523c0bf694a396543c09f6548ee7ac7da8fb478f4f0b8d5b3ca528f7f7936a4b 
d3 = 0x58af3009eb9751ce4ac97d19ef72509b981e0beadcc62f080a2f9a9cfbef4a79 
 
Redactable attestation process 
The message to be signed is as follows: 
m = (“This is a test message “, “for ISO/IEC 23264-2 “, “provided by CyberSec4Europe”) 
 
The message blocks are thus defined as follows: 
m1 = “This is a test message ” 
m2 = “for ISO/IEC 23264-2 ” 
m3 = “provided by CyberSec4Europe” 
 
The unique random indexes ranging from 0 to n – 1 for the messages are the following: 
m1 -> 1 
m2 -> 2 
m3 -> 0 
 
The admissible changes are represented as a bit mask where the bit at the position x has the 
following meaning: 

 Equals 1 => The message part with index x is redactable 

C Calculation Example 1 for the SBZ02-MERSAProd
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 Equals 0 => The message part with index x is not redactable 
 
All message blocks are set to be redactable and therefore the bit mask adm is: 
adm = 0b111 
 
The following tag is chosen: 
tagces = 0x363db14c7aad2457e978c9631e830d23 
 
The tags are the following (note that tag hi is the tag for the message with index I and mi is the 
message with the index i): 
h0  =  SHA3 − 256(𝑎𝑑𝑚 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 𝑛 ∥ 𝑖 ∥ 𝑚௜) = SHA3-256(111 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 3 ∥ 0 ∥ 𝑚଴) 

= 
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
h1  =  0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
h2  =  0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
 
The signatures per field si are the following: 
𝑠଴ =   
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^0x1e271574034d0
c743825c9412354f272578f55f8d02ee707da80d349dac71e71%0x96c36b4410813e4518bcee45b0a8
bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e 
 
𝑠ଵ =  
(0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
^0x2b13433804b7365ce27f1f81a03035c7eaccc3f5bbb0b7c2139376fbcad3500f)%0x96c36b441081
3e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x48f036060995c6da24481b433184162ce0869d70684b705e7ad55db881f180d5 
 
𝑠ଶ =  
(41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
^523c0bf694a396543c09f6548ee7ac7da8fb478f4f0b8d5b3ca528f7f7936a4b)%0x96c36b4410813e
4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
 
= 
0x401742feabc295a6f132435d2e636a1e66149c11711126cb809e574c5ac2f4fe 
 
Sigma is the following: 
𝛴  
= 
(0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e*0x48f036060995
c6da24481b433184162ce0869d70684b705e7ad55db881f180d5*0x401742feabc295a6f132435d2e6
36a1e66149c11711126cb809e574c5ac2f4fe)%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c
6b9b61e8890a657915cc19 
= 
0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27 
 
The output is then (together with the redaction key rk): 
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att =(𝛴, 𝑛, 𝑡𝑎𝑔஼ாௌ) = 
(0x66dbe1fb12729ad529892db3c084cb5596fc3868a312d46862120d5bc8b2fb1, 3, 
0x363db14c7aad2457e978c9631e830d23) 
 
Verification process: 
On input m, att, adm, vk, and Z as output by the redaction process, the verification algorithm 
proceeds as follows: 
 
TODO: Verify adm 
The verification of adm is currently skipped. 
 
The hashes are recalculated as follows: 
h0  =  SHA3 − 256(𝑎𝑑𝑚 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 𝑛 ∥ 𝑖 ∥ 𝑚௜) = SHA3-256(111 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 3 ∥ 0 ∥ 𝑚ଷ) =
 0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
h1  =  0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
h2  =  0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
 
e = 0x181 
 
r = 0x125dd4a5d4661c409ae872ab407d532716c990fc07e976119f7d9a2f5454ea60 
 
𝛴௘ = 0x125dd4a5d4661c409ae872ab407d532716c990fc07e976119f7d9a2f5454ea60 
 
The output is then: 
𝑜 = 𝑎𝑐𝑐𝑒𝑝𝑡 
 
Redaction process: 
On input the domain parameters, att, the message fields m1,m2,m3, a redaction key rk, adm=111, and 
mod=1 to indicate to redact m2 from the message. 
 
m’ = { m1, m3 }. Identifier for m1 is 1 and Identfier for m3 is 0. 
 
c0 = 0x1474 
c1 = 0x74e 
 
h0 = 0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
h1 = 0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
 
s0 =  
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0x1474/(0xd637
1dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0x1474/0x5)*0xc3f45bb
0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0x1474/0x7)))%0x96c36b44
10813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x2164e3285d165c9f132035066a538235df095b0fdb90ab1c4a3d23d2ded0effd 
 
s1 =  
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0x74e/(0xd6371d
cc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0x74e/0x5)*0xc3f45bb0ae
55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0x74e/0x7)))%0x96c36b441081
3e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
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0x5a5252c9d7cdb0714672dfc4e83227d0ffc8d719b34710b0c5a43752942166ba 
 
𝛴ᇱ =  (𝑠ଶ ∗  𝑠ଵ) 𝑚𝑜𝑑 𝑁 = 
(0x2164e3285d165c9f132035066a538235df095b0fdb90ab1c4a3d23d2ded0effd*0x5a5252c9d7cdb
0714672dfc4e83227d0ffc8d719b34710b0c5a43752942166ba)%0x96c36b4410813e4518bcee45b0a
8bc3d3f93dba14c6b9b61e8890a657915cc19 
=  
0x3ac8ace0652d4a064d2bc31c49f08f472f4d26f2e84764d215119d31eb9bb434 
 
The output is then: 
- redacted attestation att’=(𝛴′, 𝑛, 𝑡𝑎𝑔஼ாௌ) = 

(0x3ac8ace0652d4a064d2bc31c49f08f472f4d26f2e84764d215119d31eb9bb434, 3, 
0x363db14c7aad2457e978c9631e830d23) 

 redacted message m’ = { m1, m3 } 
 admissible changes 𝑎𝑑𝑚 = 0b111 
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The following is a calculation based on a java program as well as a handmade calculation and is 
focused on a bug while the redaction step. 
The result of the redaction should be the same signature as the original one, as no message part is 
redacted. As the evaluations, the handmade and the java program, confirm each other, there is 
probably a mistake in my understanding of how the algorithm proceeds. With automated testing I 
can confirm that Key generation, Signing as well as Verification are (probably) working correctly. 
This is, why I think the mistake is in the redaction process part. Also, the computed hash values are 
identical in each step and therewith I conclude that the mistake is (probably) in the calculation of 
the s0, s1 and s2. 
 
As nothing is getting redacted, the error source of iterating over the wrong sets (all_messages vs 
all_messages_left) can be excluded. This is because all_messages is the same as all_messages_left.  
 
The following provides a numerical example for the scheme specified in 7. 
 
This tool was used to evaluate the calculations: 
https://defuse.ca/big-number-calculator.htm 
This tool was used to evaluate modulo pow calculations: 
https://www.boxentriq.com/code-breaking/modular-exponentiation 
This tool was used to evaluate the SHA3-256 hashes: 
https://emn178.github.io/online-tools/sha3_256.html 
A good overview over modulo calculation rules can be found here: 
https://math.stackexchange.com/questions/995588/rules-for-calculating-modulo 
 
Also, the Java-Implementation in the WPProvider confirmed those numbers. 
Note that everything is 0 instead of 1 indexed. Not 0 indexed are constants, as the message parts 
are. 
 
The parameters used for the following example are as follows: 
- SHA3-256 is used as a hash function, cf. ISO/IEC 10118-3 
- The security parameter is set to lambda=128 
 
Key generation process 
The key material is generated according to the key generation process of the used digital signature 
scheme (keySize = 256). 
 
l = 3 (= 3) 
N = 0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
e0 = 0x5 
e1 = 0x7 
e2 = 0xb 
d0 = 0x1e271574034d0c743825c9412354f272578f55f8d02ee707da80d349dac71e71 
d1 = 0x2b13433804b7365ce27f1f81a03035c7eaccc3f5bbb0b7c2139376fbcad3500f 
d2 = 0x523c0bf694a396543c09f6548ee7ac7da8fb478f4f0b8d5b3ca528f7f7936a4b 
 
Redactable attestation process 
The message to be signed is as follows: 
m = (“This is a test message “, “for ISO/IEC 23264-2 “, “provided by CyberSec4Europe”) 
 
The message blocks are thus defined as follows: 
m1 = “This is a test message ” 
m2 = “for ISO/IEC 23264-2 ” 

D Calculation Example 2 for the SBZ02-MERSAProd
scheme

75



m3 = “provided by CyberSec4Europe” 
 
The unique random indexes ranging from 0 to n – 1 for the messages are the following: 
m1 -> 1 
m2 -> 2 
m3 -> 0 
 
The admissible changes are represented as a bit mask where the bit at the position x has the 
following meaning: 

 Equals 1 => The message part with index x is redactable 
 Equals 0 => The message part with index x is not redactable 

 
All message blocks are set to be redactable and therefore the bit mask adm is: 
adm = 0b111 
 
The following tag is chosen: 
tagces = 0x363db14c7aad2457e978c9631e830d23 
 
The tags are the following (note that tag hi is the tag for the message with index i and mi is the 
message with the index i): 
h0  =  SHA3 − 256(𝑎𝑑𝑚 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 𝑛 ∥ 𝑖 ∥ 𝑚௜) = SHA3-256(0𝑏111 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 3 ∥ 0 ∥ 𝑚଴) 

= SHA3 − 256( 
0x07||0x363db14c7aad2457e978c9631e830d23||0x03||0x00||0x70726f766964656420627920437962
6572536563344575726f7065) 
=  
SHA3-256( 
0x07363db14c7aad2457e978c9631e830d23030070726f76696465642062792043796265725365633
44575726f7065) 
= 
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
 
h1  =  0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
h2  =  0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
 
The signatures per field si are the following: 
𝑠଴ =   
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^0x1e271574034d0
c743825c9412354f272578f55f8d02ee707da80d349dac71e71%0x96c36b4410813e4518bcee45b0a8
bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e 
 
 
 
𝑠ଵ =  
(0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
^0x2b13433804b7365ce27f1f81a03035c7eaccc3f5bbb0b7c2139376fbcad3500f)%0x96c36b441081
3e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x48f036060995c6da24481b433184162ce0869d70684b705e7ad55db881f180d5 
 
𝑠ଶ =  
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(41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
^523c0bf694a396543c09f6548ee7ac7da8fb478f4f0b8d5b3ca528f7f7936a4b)%0x96c36b4410813e
4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x401742feabc295a6f132435d2e636a1e66149c11711126cb809e574c5ac2f4fe 
 
Sigma is the following: 
𝛴 = 
(0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e*0x48f036060995
c6da24481b433184162ce0869d70684b705e7ad55db881f180d5*0x401742feabc295a6f132435d2e6
36a1e66149c11711126cb809e574c5ac2f4fe)%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c
6b9b61e8890a657915cc19 
= 
0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27 
 
The output is then (together with the redaction key rk): 
att =(𝛴, 𝑛, 𝑡𝑎𝑔஼ாௌ) = 
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27, 3, 
0x363db14c7aad2457e978c9631e830d23) 
 
Redaction process: 
The input are the domain parameters, att, the message fields m1,m2,m3, a redaction key rk, 
adm=0b111, and empty mod to indicate that nothing should be redacted. 
 
m’ = { m1, m2, m3 }. Identifier for m1 is 1, for m2 is 2 and Identifier for m3 is 0. 
 
c0 = 0xe7 as 0xe7%0x5 = 1, 0xe7%0x7 = 0 and 0xe7%0xb = 0 
c1 = 0xd2 
c2 = 0x14a 
 
h0 = 0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
h1 = 0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
h2 = 0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
 
Until this point everything works correctly. 
 

s0 =  (
ఀ೎బ

௛బ

೎బ
೐బ ∙௛భ

೎బ
೐భ ∙௛మ

೎బ
೐మ

)𝑚𝑜𝑑 𝑁 = 

= 
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0xe7/(0xd6371dc
c92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0xe7/0x5)*0xc3f45bb0ae55
146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0xe7/0x7)*0x41b64ecf15d583bad5
3fcf88aeb27f19a8dd600084293c90b320b290fa70625a^(0xe7/0xb)))%0x96c36b4410813e4518bcee
45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x5512c3f27bfea2fa9ec9f0430620080da3ca0b650f59b4e0390da361f28ce4f0 
Expected value: 0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e 
 
s1 =  
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0xd2/(0xd6371dc
c92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0xd2/0x5)*0xc3f45bb0ae55
146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0xd2/0x7)*0x41b64ecf15d583bad5
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3fcf88aeb27f19a8dd600084293c90b320b290fa70625a^(0xd2/0xb)))%0x96c36b4410813e4518bcee
45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x964d8dc7821c5b5e90f3f640b4f3219f415aeb524373eadef3c66c1b711b9aea 
Expected value: 0x48f036060995c6da24481b433184162ce0869d70684b705e7ad55db881f180d5 
 
s2 =  (0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0x14a 
/(0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0x14a 
/0x5)*0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0x14a 
/0x7)*0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a^(0x14a 
/0xb)))%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x93de2e66aa909fb61660123f0dceec183ea3277056f875779677ded97a5165e 
Expected value: 0x401742feabc295a6f132435d2e636a1e66149c11711126cb809e574c5ac2f4fe 
 
𝛴ᇱ =  (𝑠଴ ∗  𝑠ଵ ∗  𝑠ଶ) 𝑚𝑜𝑑 𝑁 = 
(0x5512c3f27bfea2fa9ec9f0430620080da3ca0b650f59b4e0390da361f28ce4f0*0x964d8dc7821c5b
5e90f3f640b4f3219f415aeb524373eadef3c66c1b711b9aea*0x93de2e66aa909fb61660123f0dceec1
83ea3277056f875779677ded97a5165e)%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b
61e8890a657915cc19 
=  
0x78ec3bec4f740084edeffde9dc982482806e37ce1f4f8b1ce73912fffcc8269f 
Expected value: 0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27 
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The following provides a numerical example for the scheme specified in 7. 
 
This tool was used to evaluate the calculations: 
https://defuse.ca/big-number-calculator.htm 
This tool was used to evaluate modulo pow calculations: 
https://www.boxentriq.com/code-breaking/modular-exponentiation 
This tool was used to evaluate the SHA3-256 hashes: 
https://emn178.github.io/online-tools/sha3_256.html 
A good overview over modulo calculation rules can be found here: 
https://math.stackexchange.com/questions/995588/rules-for-calculating-modulo 
Modular invers calculator: 
https://www.mobilefish.com/services/big_number_equation/big_number_equation.php 
 
Also, the Java-Implementation in the WPProvider confirmed those numbers. 
Note that everything is 0 instead of 1 indexed. Not 0 indexed are constants, as the message parts 
are. 
 
The parameters used for the following example are as follows: 
- SHA3-256 is used as a hash function, cf. ISO/IEC 10118-3 
- The security parameter is set to lambda=128 
 
Key generation process 
The key material is generated according to the key generation process of the used digital signature 
scheme (keySize = 256). 
 
l = 3 (= 3) 
N = 0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
e0 = 0x5 
e1 = 0x7 
e2 = 0xb 
d0 = 0x1e271574034d0c743825c9412354f272578f55f8d02ee707da80d349dac71e71 
d1 = 0x2b13433804b7365ce27f1f81a03035c7eaccc3f5bbb0b7c2139376fbcad3500f 
d2 = 0x523c0bf694a396543c09f6548ee7ac7da8fb478f4f0b8d5b3ca528f7f7936a4b 
 
Redactable attestation process 
The message to be signed is as follows: 
m = (“This is a test message “, “for ISO/IEC 23264-2 “, “provided by CyberSec4Europe”) 
 
The message blocks are thus defined as follows: 
m1 = “This is ” 
m2 = “a test message ” 
m3 = “provided by CyberSec4Europe” 
 
The unique random indexes ranging from 0 to n – 1 for the messages are the following: 
m1 -> 1 
m2 -> 2 
m3 -> 0 
 
The admissible changes are represented as a bit mask where the bit at the position x has the 
following meaning: 

 Equals 1 => The message part with index x is redactable 
 Equals 0 => The message part with index x is not redactable 

E Calculation Example 3 for the SBZ02-MERSAProd
scheme
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All message blocks are set to be redactable and therefore the bit mask adm is: 
adm = 0b111 
 
The following tag is chosen: 
tagces = 0x363db14c7aad2457e978c9631e830d23 
 
The tags are the following (note that tag hi is the tag for the message with index i and mi is the 
message with the index i): 
h0  =  SHA3 − 256(𝑎𝑑𝑚 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 𝑛 ∥ 𝑖 ∥ 𝑚௜) = SHA3-256(0𝑏111 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 3 ∥ 0 ∥ 𝑚଴) 

= SHA3 − 256( 
0x07||0x363db14c7aad2457e978c9631e830d23||0x03||0x00||0x70726f766964656420627920437962
6572536563344575726f7065) 
=  
SHA3-256( 
0x07363db14c7aad2457e978c9631e830d23030070726f76696465642062792043796265725365633
44575726f7065) 
= 
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
 
h1  =  0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
h2  =  0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
 
The signatures per field si are the following: 
𝑠଴ =   
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^0x1e271574034d0
c743825c9412354f272578f55f8d02ee707da80d349dac71e71%0x96c36b4410813e4518bcee45b0a8
bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e 
 
 
 
𝑠ଵ =  
(0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
^0x2b13433804b7365ce27f1f81a03035c7eaccc3f5bbb0b7c2139376fbcad3500f)%0x96c36b441081
3e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x48f036060995c6da24481b433184162ce0869d70684b705e7ad55db881f180d5 
 
𝑠ଶ =  
(41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 
^523c0bf694a396543c09f6548ee7ac7da8fb478f4f0b8d5b3ca528f7f7936a4b)%0x96c36b4410813e
4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x401742feabc295a6f132435d2e636a1e66149c11711126cb809e574c5ac2f4fe 
 
Sigma is the following: 
𝛴 = 
(0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e*0x48f036060995
c6da24481b433184162ce0869d70684b705e7ad55db881f180d5*0x401742feabc295a6f132435d2e6
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36a1e66149c11711126cb809e574c5ac2f4fe)%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c
6b9b61e8890a657915cc19 
= 
0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27 
 
The output is then (together with the redaction key rk): 
att =(𝛴, 𝑛, 𝑡𝑎𝑔஼ாௌ) = 
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27, 3, 
0x363db14c7aad2457e978c9631e830d23) 
 
Redaction process: 
The input are the domain parameters, att, the message fields m1,m2,m3, a redaction key rk, 
adm=0b111, and mod=2 to indicate to redact m2 from the message. 
 
m’ = { m1, m2, m3 }. Identifier for m1 is 1, for m2 is 2 and Identifier for m3 is 0. 
 
As the bit at the position 2 (0b111) is 1, this message part is redactable. 
 
c0 = 0xe7 as 0xe7%0x5 = 1, 0xe7%0x7 = 0 and 0xe7%0xb = 0 
c1 = 0xd2 
c2 = 0x14a 
 
h0 = 0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
h1 = 0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
h2 = 0x41b64ecf15d583bad53fcf88aeb27f19a8dd600084293c90b320b290fa70625a 

s0 =  (𝛴௖଴ 𝑚𝑜𝑑 𝑁) ∙ (((ℎ଴

೎బ
೐బ𝑚𝑜𝑑 𝑁) ∙ (ℎଵ

೎బ
೐భ𝑚𝑜𝑑 𝑁) ∙ (ℎଶ

೎బ
೐మ𝑚𝑜𝑑 𝑁)) 𝑚𝑜𝑑 𝑁)ିଵ 𝑚𝑜𝑑 𝑁 = 

=  
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0xe7%0x96c36b
4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19)* 
modInv( 
((0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0xe7/0x5)%0x9
6c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19)*(0xc3f45bb0ae55146
d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0xe7/0x7)%0x96c36b4410813e4518bc
ee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19)*(0x41b64ecf15d583bad53fcf88aeb27f19a8d
d600084293c90b320b290fa70625a^(0xe7/0xb)%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba
14c6b9b61e8890a657915cc19))%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e889
0a657915cc19 
, 0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19) 
%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0xe7%0x96c36b
4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19)* 
modInv(0x794152ca2fd5dd084ee9f99675c7f8577cdc473b8c0703a14afb41a052b73493, 
0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19) 
%0x96c36b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
(0x2b9e413f74c9123b5450d316897272c89990051529c1d0ecc80612b7550f0d27^0xe7%0x96c36b
4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19)*0x7F9490CE66880B988C
5B8DC00161B75BCB7336621221B6DF3FEDFEBC7229294B%0x96c36b4410813e4518bcee45b
0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
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0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e 
 
s1 =  0x48f036060995c6da24481b433184162ce0869d70684b705e7ad55db881f180d5 
 
𝛴ᇱ =  (𝑠଴ ∗  𝑠ଵ) 𝑚𝑜𝑑 𝑁 = 
(0x8d1294e6b4ac989938b3a9bb968c113b341febc1762b9e55d4263b05e419915e*0x48f036060995
c6da24481b433184162ce0869d70684b705e7ad55db881f180d5)%0x96c36b4410813e4518bcee45b
0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
=  
0xfacdc3d40da8a2df1b61dde4e6c9e6ea5fa3e3efc1e5c61f6ca4305d9c4ef8a 
 
Verification process: 
On input m, att, adm, vk, and Z as output by the redaction process, the verification algorithm 
proceeds as follows: 
 
The input m consists of  
m1 = “This is ” 
m3 = “provided by CyberSec4Europe”. 
 
For verification of adm the following is done: 

1) For each of those message parts m1 and m3 set the corresponding bit of adm to 1. This does 
not change adm in this case (adm = 0b111).  

2) Flip each bit. Therewith adm results in adm = 0b000. 
3) Calculate the cardinality of adm. This is 0. 
4) If the cardinality of adm is not 0, set o = reject and return. 
5) Reset adm to it’s original content (adm = 0b111). 

 
The hashes are recalculated as follows: 
h0  =  SHA3 − 256(𝑎𝑑𝑚 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 𝑛 ∥ 𝑖 ∥ 𝑚௜) = SHA3-256(111 ∥ 𝑡𝑎𝑔஼ாௌ ∥ 3 ∥ 0 ∥ 𝑚଴) 

= 
0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006 
h1  = 0xc3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee 
 
e = 𝑒଴ ∗  𝑒ଵ = 0x5*0x7 = 0x23 
 

r = ℎ଴

೐

೐బ ∗  ℎଵ

೐

೐భ  𝑚𝑜𝑑 𝑁 = 
(0xd6371dcc92e786b523f5d79edede1183c9a5ab0d5c80a75778b9144278943006^(0x23/0x5))*(0xc
3f45bb0ae55146d987b36362cd173ccce5210f6a606b3f1c59b6dee2530b2ee^(0x23/0x7))%0x96c36
b4410813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x26ba7ce1b5571fcf44ed956c3c21b2d0697e2a88b90178993551650b6ce03b5 
 
𝛴௘ 𝑚𝑜𝑑 𝑁 = 
(0xfacdc3d40da8a2df1b61dde4e6c9e6ea5fa3e3efc1e5c61f6ca4305d9c4ef8a^0x23)%0x96c36b441
0813e4518bcee45b0a8bc3d3f93dba14c6b9b61e8890a657915cc19 
= 
0x26ba7ce1b5571fcf44ed956c3c21b2d0697e2a88b90178993551650b6ce03b5 
 
The output is then: 
𝑜 = 𝑎𝑐𝑐𝑒𝑝𝑡 
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G Attached documents

There is a CD attached to the printed version of this work. The following data is on
it:

• This bachelor thesis as a PDF

• A file “readme.txt” with information about how to use the other files

• A jar file of the backend code (WPProvider)

• A copy of the folder containing the backend code (WPProvider)

• A jar file of the JCrypTool plugin “Redactable Signature Schemes”

• A copy of the folder containing the JCrypTool plugin “Redactable Signature
Schemes”
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